
Computer Science Journal of Moldova, vol.13, no.3(39), 2005

Concept as a Generalization of Class and

Principles of the Concept-Oriented

Programming

Alexandr Savinov

Abstract

In the paper we describe a new construct which is referred
to as concept and a new concept-oriented approach to program-
ming. Concept generalizes conventional classes and consists of
two parts: an objects class and a reference class. Each concept
has a parent concept specified via inclusion relation. Instances
of reference class are passed by value and are intended to rep-
resent instances of child object classes. The main role of con-
cepts consists in indirecting object representation and access. In
concept-oriented programming it is assumed that a system con-
sists of (i) conventional target business methods (BMs), and (ii)
hidden representation and access (RA) methods. If conventional
classes are used to describe only BMs then concepts allow the
programmer to describe both types of functionality including its
hidden intermediate functions which are automatically executed
when objects are being accessed.

1 Introduction

1.1 Object Representation and Access

Let us consider a conventional method call: myRef.myMethod(). In
OOP it is assumed that a reference stores a target object identifier. It
is allocated and managed by routines which are not directly controlled
by the programmer. For example, memory handles are allocated by
the operating system and Java references are provided by the runtime

c©2005 by A. Savinov

292



Concept as a Generalization of Class and . . .

environment. In such an approach the programmer is unaware of how
objects are represented and what intermediate actions are performed
behind the scenes after a method is called and before its first state-
ment starts. The traditional object-oriented program functionality is
concentrated in class methods. It is important that any function exe-
cuted in the program is the result of some explicit method invocation
written by the programmer somewhere in the source code. And any
object that appears in the program is the result of an explicit instanti-
ation. The program itself does not create any data structures and does
not perform any actions for its internal use in order to maintain user
defined classes.

Such an approach to programming is known to be very simple and
efficient for many types of systems because the compiler or runtime
takes care of all the object representation and access issues. However,
this full automation has its price: the programmer is not able to influ-
ence the object representation and access mechanism and is restricted
by the standard functionality. Indeed, in many cases the following ques-
tion arises: What if I want to define my own format of references and
access procedures which are developed specially for my system? For ex-
ample, I might want to develop my own memory manager because the
objects I am going to use have a very special format and properties.
Or, in addition, my system might need to carry out special security
checks whenever its objects are accessed. In all these and many other
cases the standard mechanisms of representation and access could be
too restrictive. In particular, main memory is only one possible loca-
tion for objects. In general case they may well be stored in some cache,
on disk or on remote computer. Even if a memory manager is very
general it cannot cover all the needs of an arbitrary program.

A new approach to programming described in this paper assumes
that we can define our own format of references and our own access
procedures which are adapted to the purposes of each individual pro-
gram. Custom references could be defined as integers, text strings or a
combination of any other fields. And the corresponding access proce-
dures may include any code because it is written by the programmer.
In this case the representation and access mechanism is an integral

293



A. Savinov

part of the program it is written for. However, these custom references
and access procedures are not used by the programmer anywhere in
the source code. It is the task of the compiler or runtime environment
to activate them. Thus the method myRef.myMethod() does not start
immediately because it is necessary to resolve the reference and to find
the target object. In this case some intermediate procedures are im-
plicitly activated and this code (which is part of the program) executes
after the method call and before its first statement.

1.2 Two Types of Functionality

One of the main general assumptions of the new approach is that there
exist two types of functionality:

• business methods (BMs) which are defined in classes and used
explicitly in the program, and

• representation and access (RA) functionality constituting a sep-
arate cross-cutting concern and activated implicitly

Business methods or target methods are explicitly used by the pro-
grammer in order to access applied functionality of object classes in
the traditional OO manner independent of how they are represented
and accessed. BMs are precisely what OOP is designed for: we can
easily define classes (with reuse via inheritance) and then call their
object methods in the program. RA functions (or intermediate func-
tions) introduced and studied in this paper determine how objects are
represented and accessed independent of the target BM.

In the described approach we assume that a great deal of program
functionality is activated and executed when objects need to be repre-
sented and accessed. It is a kind of invisible matter that cross-cuts any
program because these functions are hidden, they are not called explic-
itly in the source code and they are executed behind the scenes. In other
words, we assume that such a simple line of code as myRef.myMethod()
may activate rather complex intermediate functions which are invisible
in traditional programs. A general goal of the described approach to

294



Concept as a Generalization of Class and . . .

programming consists in making this hidden level of functionality an
integral part of the program. We need to legalize these functions be-
cause they cannot be qualified as something auxiliary while the facilities
provided by the standard runtime environments are rather limited for
contemporary programs. The thing is that in large program systems
RA functions account for most of the program complexity. This is why
the level of RA functions should be an integral part of the program
that has to be dealt with and developed for this very program.

If we represent a program as consisting of internal spaces (scopes,
containers, layers) where objects live then RA functions can be thought
of as concentrated on this space borders and automatically executed
whenever a process intersects a border on its way to the target object
(Fig. 1). Target BMs are executed when the process reaches the target
object. According to this analogy each method call is a sequence of
steps leading to the target object. (In contrast, in the conventional
programming a method call is viewed as only one step leading from
the source context to the target.) The target business method speci-
fied explicitly in the program is only the last step while intermediate
steps involve various RA functions which are hidden and are executed
seamlessly behind the scenes. In particular, in such a program source
code it would be impossible to find any explicit invocation of an in-
termediate method. The program might consist of a relatively small
number of explicit method calls but be rather complex because of the
hidden functionality.

Figure 1. Intermediate borders possess important functions

295



A. Savinov

One of our main assumptions is that the automatically triggered
border processes account for a great deal (and even most) of the whole
program complexity and reflect specific properties of this program just
like its BMs. Hence the programmer needs to be able to describe these
functions as an integral part of the program. In other words, a program
has to consist not only of BMs (normal classes with their methods)
but also include facilities for describing space borders, how objects are
represented within particular subspaces and how they are accessed. In
such an approach even if a program has little or no BMs at all, it may
well be rather complex because of its internal space structure and RA
functions associated with space borders and automatically executed
when they are intersected by interacting processes.

1.3 Design Goals

It is very important that RA functionality is not associated with any
target class but instead, it scatters the whole program. However, it
is important that one RA mechanism be described in one place rather
than distributed all over the program. This criterion is formulated as
the following design goal:

DG1 [Modularization] Representation and access functions have to
be described in a modular manner.

This means that if there are two custom RA methods as part of the
program then they need to be described in two places. Then these RA
functions can be automatically and implicitly injected in all appropriate
points in the program where we find it necessary. For example, one
custom reference format with its associated resolution methods should
be described in one place.

Although RA functions are described in a modular manner we do
not want to use them explicitly in all points in the program where they
are appropriate. We want only to somehow specify those points so that
the compiler could inject the necessary code automatically. It is im-
portant that all the method calls are described as usual by specifying
a target object and some method. The compiler then uses declara-
tive properties of the target class in order to choose what intermediate

296



Concept as a Generalization of Class and . . .

actions to execute. However, in the source we do not see those interme-
diate actions because they are hidden. So the next design goal consists
in ability to make normal method calls:

DG2 [Transparency] It is an illusion of instant access. Method calls
are made as usual by specifying only a reference and a method without
any explicit indication of the type of intermediate actions.

A consequence of this principle is that the use of objects and their
BM does not change when we change the underlying RA mechanism.
For example, we may have a huge number of BM calls like ref1.m1(),
ref2.m2(), ref3.m3() all over the program. In OOP all these objects
use one and the same default mechanism of RA. However, in our ap-
proach objects of different classes may use different and rather complex
RA mechanisms assigned to them (and described in this very program
in a modular way). In particular, ref1 might be identified by a primary
key and accessed via JDBC protocol, ref2 might be represented by an
absolute offset in the local heap while ref3 might be an object on the
moon represented via some Universe Unique Identifier and accessed
via ISS. The transparency of access guarantees that we do not need
to know how objects are represented in order to access their BM. We
retain an illusion of instant access when using objects and it is the task
of compiler, interpreter or an execution environment to activate all the
necessary RA functionality. If we change the way how our objects are
represented then the source code where they are used does not change.

It is very important that one and the same RA mechanism could
be used to serve many target classes in the program. For example,
if we develop a complex hierarchical persistent memory manager with
special access rules then it is very natural to use it for any class of
object in the program. Thus the following design goal makes sense:

DG3 [Reuse] Many target classes should be able to use one RA
mechanism.

Each target class in the program can be assigned some appropriate
RA mechanism. And even for individual uses of classes (instantiations)
it is desirable to be able to specify how this concrete object should be
represented and accessed. However, we want to do it in a declarative
manner rather than to control this at run-time. The compiler then

297



A. Savinov

uses the declarations in order to activate the necessary intermediate
functionality:

DG4 [Declarativity] RA mechanism should be assigned to target
classes in a declarative manner.

Assume that there is a module with intermediate RA functionality
and a module with target BMs. We want these business methods be
accessed via this intermediate functions. There is a design alternative:
either (i) to indicate the target module in the context of the RA module,
or vice versa (ii) to indicate the RA mechanism in the context of the
target module. In other words, who knows whom: intermediate module
knows target module, or vice versa? We choose the second alternative:

DG5 [Direction] RA modules do not know target classes they serve
and it is each individual target class that should declare what kind of
RA mechanism it needs.

The two types of functionality found in any system differ logically
rather than physically. This means that they always exist together,
cross-cut each other and in most cases cannot be separated. One and
the same piece of code can be considered an intermediate function that
is activated automatically and a normal business method that is used
explicitly. In particular, we do not have one programming construct for
business methods and another construct for intermediate functionality.
We want to have one mechanism that is able to express both types of
functionality:

DG6 [Integrity] A module should not have one dedicated purpose
but rather it should be able to express both types of functionality
simultaneously.

Assume that for our target classes we specified some concrete RA
mechanism. The functions of this RA module are then used before the
target methods will be executed. However, in many cases we want this
very RA mechanism to rely on some other RA mechanism. In this case
the structure of indirection will be nested.

DG7 [Hierarchy] RA functionality described in a modular manner
should have a hierarchical structure where parent modules play a role of
intermediate layers for their child modules which play a role of targets.

298



Concept as a Generalization of Class and . . .

1.4 Concept

In this paper we propose a new approach, called concept-oriented pro-
gramming (COP), which is based on a special construct called concept.
Shortly, concept is a combination of one object class and one reference
class. Object class is the conventional class as defined in OOP. What
is new in this approach is the reference class which complements the
object class just like RA functions complement BMs. By combining ob-
ject class and reference class we make it possible to describe two sides of
any system: explicit BMs and implicit RA functions. Object class and
reference class have one name (concept name) and may define methods
with the same name (any method has a definition within object class
and within reference class). Instances of object class, called objects,
are passed by reference. Instances of reference class, called references,
are passed by value. Informally, the main idea is that references passed
by value can represent objects.

Concepts are organized into a hierarchy by using inclusion relation,
i.e. any concept has one parent concept. Concepts cannot exist outside
an inclusion hierarchy — if a concept does not have a parent concept
then it is assumed to be some default concept. Concept hierarchy plays
an important role because its structure determines how objects in the
program are represented and accessed. In other words, the format
of reference and intermediate procedures used to access some target
object depend on its position in the concept inclusion hierarchy. Parent
concept always indirects representation and access to its child concepts.
In order to specify what RA mechanism to use we simply need to
include a concept into an appropriate parent concept.

One concept can be interpreted as a space with its own border
(Fig. 1). If a concept is included into another concept then it is placed
within this parent space. The external space is the root of the concept
hierarchy while internal spaces represent its child concepts. Instances of
the root concept are represented and accessed directly using some built-
in RA mechanism (as if they were OOP objects). Instances of internal
concepts are represented and accessed using their parent concepts.

Informally, the difference between classes and concepts is analogous

299



A. Savinov

to that between real numbers and complex numbers. Class reflects only
an explicit (real) side of software system while concept is able to de-
scribe both sides by combining in one construct one object class and
one reference class. Reference class of concept describes invisible hid-
den functionality of a software system like imaginable part of complex
numbers. In the same way as complex numbers are much more ex-
pressive and natural for mathematical tasks, concept is much more
expressive and natural for computer programming.

2 Concept Inclusion Hierarchy

Concept is a generalization of conventional classes defined as a pro-
gram element consisting of two parts: (i) an object class with instances
called objects and passed by references, and (ii) a reference class with
instances called references and passed by value. For example, Table
1 defines one concept with name MyConcept. Its object class has one
field referencing an instance of OtherConcept (line 2), and reference
class has one integer field (line 8) intended for identifying objects of
other classes. Both object class and reference class define myMethod
with different implementations (lines 3 and 9). Note that we do not
know here what is the format of field ref (line 2) because it depends on
how OtherConcept is declared. It is a general principle of the concept-
oriented programming that reference format and access methods de-
pend on the target class declaration. This reference could have any
structure appropriate for our task or we might choose to use the de-
fault reference format (OOP approach). However, we can call methods
of OtherConcept (line 4) as usual and all resolution and other inter-
mediate functions will be executed automatically.

Table 1. Concept is a pair of object class and reference class.

00 concept MyConcept in ParentConcept
01 class { // Object class
02 OtherConcept ref; // Indirect reference

300



Concept as a Generalization of Class and . . .

03 int myMethod() { // Incoming method
04 return ref.getInt();
05 }
06 }
07 reference { // Reference class
08 int id; // Identifies other objects
09 int myMethod() { // Outgoing method
10 return context.myMethod() + 5;
11 }
12 }

Objects are never accessible directly because they permanently exist
in some kind of storage. Their position is physical in the sense that
it cannot be changed. Objects are accessed via their representatives
in the form of references. References on the other hand do not have a
permanent position in space. They are travelling elements that move
between different points by value. This property reflects the existence
of two realities: (i) storage with its address system as a set of permanent
addresses, and (ii) a system of information transfer which allows for
interactions to be propagated all over the space of objects.

References are elements that exist and can be manipulated only by
value. In other words, references do not have their own references and
hence represent themselves. References are coordinates in some space
or elements of an address system where the address system is a space of
objects. For any space to exist two elements are needed: this space itself
as an object and its addresses as references. Normally for one object
there exist many references. An object can be thought of as a scope
or space instance while its references are concrete addresses within this
space. A concept then is aimed at describing both space structure
and its address structure. In other words, object class describes how
the space will look like and how it will function while reference class
describes the format of addresses within this space. For example, a
country could be viewed as a space where addresses are city names. Its
concept then could be written as follows:

301



A. Savinov

00 concept Country
01 class { String countryDescription; }
02 reference { String cityName; }

This concept means that there can be many country objects each
having some description. A country then defines its own internal coor-
dinate or address system in reference class. According to this address
system any object within one country is identified via some unique city
name. Note that here we do not know how countries themselves are
identified because concepts define only their internal coordinate system
for which they are responsible.

Another example is where we define our own memory manager
where objects of any type can be stored. Concepts allow us to de-
fine such a storage at high level as an abstract space with its own name
and then take responsibility for everything that happens inside this
space. In particular, we can define characteristics of the space itself
in object class and its address format in reference class. The current
number of internal objects is kept in a field of the concept object class.
Internal objects themselves are identified by unique integers:

00 concept MemoryManager
01 class { int objectCount; }
02 reference { int objectId; }

We may have many memory managers and then many objects of
this concept will be created. Each such memory manager may create
many references each of them representing some internal object. Note
again that references are not objects because they are passed by value
and hence do not have a position in space (their own reference). In
contrast, objects have a position in space which is represented by some
reference.

Using concepts we can define the format of objects and format of
references that are intended to represent objects. Then the question
is how do we determine what references represent what objects? For
example, what references are used to represent country objects and
what references are used to represent memory manager objects in the
previous examples?

302



Concept as a Generalization of Class and . . .

In order to solve this problem we use the mechanism of inclusion re-
lation which means that each concept is included into a parent concept.
Thus the whole program is not simply a number of concepts but rather
a hierarchy of concepts. In this hierarchy any concept has one parent
(explicitly defined) and a number of children (not directly known in
its declaration). For example, in Table 1 MyConcept is included into
ParentConcept using keyword ’in’.

In order to determine what references represent what objects we use
the following principle: an object is represented by its parent concept
reference. This means that there is one-to-one correspondence between
this concept objects and its parent concept references. Since references
are passed by value they can be used to represent objects in other
points of space. For example, in Table 1 all instances of MyConcept
will be represented by instances of ParentConcept reference class. If
we want countries to be represented by their country code then concept
Country has to be included into the following parent concept:

00 concept CountryCode
01 class { int countryCount; }
02 reference { String countryCode; }
03 concept Country in CountryCode;

This means that all country objects will be represented by means of
the corresponding country code. For example, variables that reference
Germany will store ”DE” as their values. This value will be passed
to methods as parameters, returned from methods and stored in local
variables and object fields. If we want our memory managers to be
represented by long integers then concept MemoryManager has to be
included into a parent concept with the long integer field in its reference
class.

An advantage of such an approach is that the programmer specifies
and can change the parent concept declaratively. For example, if we
want to make a remote memory manager then we simply change its par-
ent concept which supports remote references. The memory manager
itself as well as all its uses in the program need not to be changed.

It is assumed that there exists one root concept provided by the

303



A. Savinov

compiler, interpreter or an execution environment while all program
concepts defined by the programmer are directly or indirectly included
into the root. There may be more than one root in the case the compiler
provides several standard RA mechanisms, for example, local heap,
global heap, managed objects, persistent objects, remote objects etc.
Classes and concepts included into the root concept are represented
using the system default RA mechanism like memory handles or Java
references. Conventional OO program can be viewed as consisting of
classes included into the root concept. The root is normally a static
concept with a single well known object instance. This is why it does
not need a (dynamic) reference and needs not to be resolved. If a
parent concept is not specified then by convention it is assumed to be
the root concept. The compiler however needs to know what default
RA mechanism to use for the root. For example, if we want all objects
to be finally represented by memory handles allocated by the operating
system in global heap then the root concept will look as follows:

00 concept Root
01 class { AllocationTable allocationTable; }
02 reference { long memoryHandle; }

This system level concept defines its reference class as consisting of
one long field and hence all objects at this level will be represented by
unique long integers. For example, assume that our custom memory
manager is included into such a root concept:

00 concept MemoryManager in Root
01 class { Map objectIdToMemoryHandle; }
02 reference { int objectId; }

This concept will represent all objects of its child concepts by means
of integer identifiers. However, each such custom identifier will replace
some root memory handle. The mapping between integer identifiers
and long memory handles is stored in the field of this concept object
class. If we want our target objects to be managed by this custom
memory manager then we simply include the target class or concept
into it:

304



Concept as a Generalization of Class and . . .

class MyTargetClass in MemoryMangaer

After that all instances of this child target class will be represented
indirectly by means of its parent references (integer identifiers). Let us
consider the following code:

00 void myMethod(MyTargetClass param) {
01 param.targetMethod();
02 }

Here the method parameter has a class that is included into the
custom memory manager concept. Hence this parameter will be passed
by using integer values. If we need to call some method of this object
then this reference (integer value) has to be resolved into its own parent
reference. In our case the integer value has to be resolved into some
long integer which is a memory handle allocated by the root. The root
reference is then used to make a direct method invocation. After that
the access procedure returns.

An object (instance of this concept object class) where a reference
was created is referred to as context. Context and its references belong
to the same concept. We say that references exist in some context
and one context may create many references. The current context is
available in the program via keyword ’context’. For example, line 10
in Table 1 accesses a method defined in the object class of this concept
(line 3).

If an object class is static with no instances (with a single instance
known at compile time) then such a concept is also said to be static.
If a concept has no reference class defined then it is a normal class.

A typical object run-time structure is shown in Fig. 2. Dashed
boxes represent contexts (objects of concepts) while black boxes are
references within these contexts. The outer most dashed box is the
root context, i.e., an instance of the root concept (such as the system
default memory manager). The root context has several root references
which represent internal child contexts at different depth (not neces-
sarily direct children). In this example there are two child contexts
belonging to one concept MemoryManager. (In general case there are

305



A. Savinov

many child concepts each crating many instances.) Thus there exist
two memory managers each managing its own set of objects. For exam-
ple, the first memory manager allocated two integer references in order
to represent two internal objects. However, these internal objects have
their own internal objects and so on.

Figure 2. Context structure

It is important that any reference (black rectangle) replaces some
parent reference (denoted by upward dot line pointing to a replaced
parent reference). At the same time a reference represents some child
object (denoted by downward line pointing to represented child object).
In both cases these relationships are not necessarily direct. That is, a

306



Concept as a Generalization of Class and . . .

reference may replace a parent reference of higher order including some
root reference. And a reference may represent a child object of higher
order including some target object.

3 A Sequence of Access

3.1 Reference Substitution and Resolution

The system root concept provides default format for object references
which are used to directly represent and access all objects in the pro-
gram. Here direct RA does not mean that the objects will be really
accessed instantly. Rather, by direct access we mean that the program-
mer is not able to influence this level of RA functionality. For example,
we say that Java references provide direct access because the program-
mer is unaware of the underlying RA mechanism which actually can
be rather complex. Even physical memory addresses do not provide
the ultimate direct access because they are processed at hardware level
and each access requires a number of hardware clock cycles. However,
in a program we can assume that such hardware addresses are used for
direct access because all the program objects are resolved into them.

One important use of concepts consists in indirecting object rep-
resentation and access in the program by describing custom format of
references and custom access procedures. Program objects are still rep-
resented by the root references however these root references are not
stored and passed anywhere in the program as representatives. Instead,
objects are represented by means of custom references which replace
the corresponding root references. Since concepts are organized into a
hierarchy, the reference substitution has a nested nature. This means
that a child reference replaces some parent reference which in turn re-
places its own parent reference and so on till the root which provides
direct access to the target object. For example, a street within a city
might define its own local notation in order to identify houses. How-
ever, in order for the basic access mechanism to work we need to map
these local identifiers into the parent city-level identification format.
Thus each street-level local identifier will replace some city-level parent

307



A. Savinov

identifier for a house. The same substitution mechanism can be used
in custom memory managers which can introduce its own local format
for object identification. However, these local identifiers replace parent
system-level identifiers. Each memory manager is then responsible for
storing this mapping and resolving its identifiers.

Table 2. Reference resolution.

00 concept A in Root
01 class { static Map map; }
02 reference {
03 int id;
04 void continue() {
05 Object o = context.map.get(id);
06 o.continue();
07 }
08 }
09 concept B in A
10 class { static Map map; }
11 reference {
12 String id;
13 void continue() {
14 A a = context.map.get(id);
15 a.continue();
16 }
17 }

For example, suppose that we want to develop a mechanism for rep-
resenting our program objects by means of integer values (that replace
the system default references). This means that all variables, method
parameters, return values and object fields will store integers for those
objects rather than the default references. These integer references will
live in their own context which is included into the root context. In

308



Concept as a Generalization of Class and . . .

Table 2 such a mechanism is described as concept A (line 0-8). Its ref-
erence class has only one integer field (line 3) that is used to identify
child objects. Thus if we include any class or concept into A then all
its instances will be represented by integers, which will be passed by
value as the object representatives. It is important that these integers
will replace parent references. In Table 2 integer references of concept
A replace references provided by Root which have unknown format be-
cause they are provided by the compiler. For example, in Java integer
reference of concept A would replace Java references.

Figure 3. A sequence of reference resolution

Such a substitution is shown in Fig. 3 where the root context has
one reference which directly represents some target object in a child
context. However, instead of this root reference the compiler will use its
substitute of integer type created in context A. Thus the root reference
is actually not used anywhere in the program. If we declare a new child
concept B and include it into A (line 9 in Table 2) then the substitution
will have a nested character. Concept B uses text strings to identify its
child objects, that is, any child object will have a text string assigned
to it, which is unique within this context. This text string replaces
some parent reference of integer type which in turn replaces some root
reference providing a direct access to the target object. This hierarchy
can be developed further by defining new concepts and including them
into the existing ones. The main idea however remains the same: any

309



A. Savinov

child object will be automatically represented by its parent concept
reference which replaces some root reference.

It should be noted that it is not necessary that a reference replaces
its direct parent reference. In particular, a reference can replace its root
reference. For example, in Table 2 and Fig. 3 concept B might well
be designed in such a way that string identifiers replace root references
(rather than integers of concept A which then replace root references).
It is important also that reference substitution is performed and makes
sense within some concrete context only. In particular, the context
stores all the information that is necessary to resolve indirect references
into their parent counterparts. In Table 2 such information is stored
in a field of the concept object class (lines 1 and 10 for concepts A and
B, respectively).

Concept hierarchy is intended to describe a reference substitution
order where child references replace their parent references. In this
way the programmer can describe internal space with its own local co-
ordinate system that indirects the parent coordinate system. However,
one of the design goals of the concept-oriented approach is that this
indirection mechanism has to be transparent when it is used (DG2). In
other words, when we use our target objects we do not need to know
how they are represented and what is necessary to do in order to ac-
cess them. In particular, we do not need to know the format of their
references and how these references are resolved. For example, if we
want objects of class C to be represented by text strings then we include
it into concept B. After that we use objects of class C as usual and it
is the parent concept that is responsible for the resolution of custom
references.

The mechanism of reference resolution is implemented at the level
of each concept that defines its own references. Thus each concept
that defines its references which replace parent references is also re-
sponsible for their resolution whenever some target object needs to be
accessed. Such a resolution is implemented in the special method of
reference class called continue (lines 4 and 13 in Table 2). The role
of this method consists in providing a door or portal between level.
In this sense it is not a normal method in the sense of object-oriented

310



Concept as a Generalization of Class and . . .

programming but rather a mechanism for border intersection and con-
text change. It is declared as a method because its implementation is
provided by the programmer who decides what should happen when
a process intersects this border (not necessarily only reference resolu-
tion). The continuation method takes no parameters and returns no
value. It is applied to a parent reference in order to continue the current
process in the parent context.

Whenever an indirectly represented object is going to be accessed,
its reference is automatically and transparently resolved by the contin-
uation method. Reference resolution (continuation) method is applied
to an instance of reference class and executes in the context of its object
class. For example, continuation method of reference A executes in the
context of an object of class A while continuation method of reference
B executes in the context of some object of class B. Let us assume that
class MyTargetClass is included into concept B and then its business
method targetMethod is called from somewhere in the program:

00 MyTargetClass in B {
01 void targetMethod() { ... }
02 }
03
04 void myMethod(MyTargetClass param) {
05 param.targetMethod();
06 }

Notice again that when we call the target method (line 5 above) we
do not know how this object is represented and how it will be accessed.
It is the task of compiler to find all the parent concept and use their
functionality to organize the resolution procedure. In our example the
target object is included into concept B and hence it will be represented
by a text string. When a method of this object is invoked the compiler
needs to resolve this text string into the corresponding root reference
and then make a direct method call. Thus the compiler applies contin-
uation method of reference B to the reference representing the target
object (start of resolution in Fig. 3). The continuation method (lines
13-16 in Table 2) has to decide how to resolve this reference (text

311



A. Savinov

string). In our example, it restores the replaced parent reference given
the value of this reference using information from the context (line 14).
When the parent reference is restored it simply passes the control by
invoking the parent continuation method (line 15). This means that
the process intersects the border and proceeds in the parent space (in
concept A). Continuation method of reference A is implemented in a
similar manner. Its task consists in restoring a root reference given
some integer value as a key. When the root reference is found it again
proceeds by invoking the parent continuation method (line 6). How-
ever, in this case it is a root reference and hence its implementation is
provided by the compiler. We do not know what concretely happens
in the root continuation method however its task consists in calling the
target business method (direct call of target BM in Fig- 4). It is possi-
ble now to make a direct call because the object reference is completely
resolved and this is precisely what happens when we call a method in
OOP. When the target method finishes the whole procedure returns
and the continuation method can execute some clean up procedures.

It should be noted that the continuation method is provided by the
programmer and can use any resolution strategy or include any other
necessary code. It is important only that the compiler will follow the
concrete sequence of steps when an object is going to be accessed. In
particular, the continuation method may include more complex logic
then simply object resolution. Its general purpose consists in providing
a mechanism for border intersection and code that will trigger auto-
matically whenever a process wants to intersect this border. This is
precisely the code that is hidden in the conventional object-oriented
programming.

3.2 Context Resolution

In the previous section we described how references are resolved in con-
tinuation method using information from the current context. However,
one problem is that contexts in most cases are not static. Rather, they
are normal objects with their own references as shown in Fig. 2. For
example, when an integer reference is being resolved we need to ac-

312



Concept as a Generalization of Class and . . .

cess information from its memory manager which itself is represented
by its parent reference. In particular, lines 5 and 14 (Table 2) cannot
be directly executed because each context is represented by its parent
reference (just like any other object).

An important conclusion is that it is not enough to store only an
object parent reference as has been described in the previous section.
For complete representation it is necessary to store also references to all
the parent contexts of the target object. For example, it is not enough
to store only a street name because it is specified relative to its city
(context) which in turn is specified relative to its country and so on till
the root context (which is static).

Such a hierarchical approach to object representation is imple-
mented via the mechanism of complex references. A complex refer-
ence is a sequence of several reference segments. Each segment is an
instance of one reference class. The very first (high) segment is of
root type and represents the first context within the root where all
child objects live. The next segment is of child concept type and so
on till the target class. For example, in Table 2 a target object of
MyTargetClass included in concept B would be represented by three
segments: high root segment representing context A, middle segment
of integer type representing child context B, and low string segment
representing the target object. Such a reference might be equal to
<0x123, 10, "objectUniqueName"> where 0x123 is the value of the
root (system default) reference, 10 is the value of reference A and
"objectUniqueName" is the value of reference B.

What happens if we get a reference of target class MyTargetClass
and then call some its method c.myMethod()? In the previous section
we described this process as a resolution of the target reference into
the corresponding root reference using information in the intermediate
contexts. However, now our object is represented by three segments
rather than only one low segment. The first two segments represent
the two intermediate contexts. One approach solving this problem
consists in resolving these intermediate contexts each time we need to
access them from the child context. However, this technique is rather
inefficient because context is supposed to be used very intensively. An

313



A. Savinov

alternative approach consists in changing the sequence of access. Now
high segments are resolved before low segments and the result of the
resolution is accessible from all child contexts. In other words, the
procedure described in the previous section is repeated for each segment
of the complex reference starting from the high segment and ending
with the last low segment representing the target object. The main
advantage is that parent contexts are guaranteed to be resolved and
directly accessible from any child context.

In our example shown in Table 2 the compiler determines that the
target object of MyTargetClass has three parent concepts and hence is
represented by three segments. Although only the last segment repre-
sents the target object, in order to resolve it, we need its two intermedi-
ate segments. So the compiler in this situation starts from resolving the
very first (high) segment. It is however of the root class and hence is
already in the default system format that can be used for direct access.
On the second step the compiler resolves the second integer segment
of concept A. When this segment is resolved, the corresponding root
reference represents the next child context. After that the next string
segment is resolved into the root reference which represents the target
object.

Table 3. A sequence of access.

01 concept A in Root
02 class {
03 Map map;
04 void continue() { // Incoming method
05 continue(); // Outgoing (reference) method
06 }
07 }
08 reference {
09 int id;
10 void continue() {
11 Object o = context.map.get(id);

314



Concept as a Generalization of Class and . . .

12 o.continue();
13 }
14 }
15
16 cconcept B in A
17 class {
18 Map map;
19 void continue() { // Incoming method
20 continue(); // Outgoing (reference) method
21 }
22 }
23 reference {
24 String id;
25 void continue() {
26 A a = context.map.get(id);
27 a.continue();
28 }
29 }

Such a sequence of access (from high to low segment) is supported
by a special method of object class called continue. Note that this
method has the same name as the method of reference class. In other
words, each concept has two continuation methods: one defined in
reference class used to resolve one segment (described in the previous
section), and another defined in object class used to enter just resolved
context. (The same is true for any other method of concept.) Object
continuation method takes no parameters and returns no value (line
4 and 19 in Table 3). It is called after this object is resolved and is
going to be accessed, that is, after the border intersection. Using this
continuation method the process enters the scope of the object after its
parent reference is resolved. In contrast, reference continuation method
(line 10 and 25 in Table 3) is applied to reference and its role consists in
resolving it to a system default reference that represents a child object
and can be used for direct access.

A generic sequence of access using two continuation methods is

315



A. Savinov

shown in Fig. 4. A target object of class C is represented by three
segments 1, 2 and 3 created in contexts Root, A and B respectively.
After entering the root context it is necessary to resolve segment 1
which represents the next context. However, it is already resolved
because all root references (1, 4 and 6 in this example) are direct and
have system default type. Therefore we follow a dash line and enter
the child context A using its continuation method (line 4 in Table 3 and
thick arrow in Fig. 4).

Figure 4. A sequence of context resolution

This method does nothing in our example and simply proceeds by
resolving its own reference (line 5 and double arrow from 2 to 4). Root
reference 4 is a direct representation of the next child context B so we
again follow a dash line and get into the context B using its object
continuation method (line 19 and thick line). Here we need to resolve
the last segment 3 by applying continuation method of its reference
(called from line 20 and defined in line 25). This method resolves
reference 3 to reference 5 of its parent concept A using information in
the context (line 26) and then calls the parent resolution method (line
27) which resolves 5 to root reference 6 in the same way. Thus reference
6 is a direct representation of the target object and we can enter its

316



Concept as a Generalization of Class and . . .

scope and call its business method specified in the source access request.
Note that the sequence 〈reference 3, double arrow, reference 5, double
arrow, reference 6〉 is the resolution process described in the previous
section, which uses reference continuation method.

3.3 Dual Methods

In the previous sections we mentioned that both reference class and ob-
ject class of concept may define a method with the same name. How-
ever, in the concept-oriented program a method is invoked by using
only its main name with no indication whether it belongs to a refer-
ence class or an object class. Then the following question arises: which
of two versions has to be executed? One example has been considered
in the previous section. The special continuation method defined by
the programmer and used by the compiler to organize transparent ac-
cess is defined both in reference class and object class. The reference
continuation method is used to resolve the current reference while the
object continuation method is executed when the process enters the
current context. It is also possible to define any normal method of
a concept as consisting of two parts: one within reference class and
the other within object class. Methods of object class are referred to
as incoming because they are visible from outside and are executed
when any process enters this object scope (double line arrow in Fig.
5). Objects of reference class are referred to as outgoing because they
are visible from inside and are called when this object is used by its
child objects (thick arrow in Fig. 5). For example, MyConcept in Table
1 has incoming method (line 3) and outgoing method (line 9) which
have the same name.

One principle of the concept-oriented programming is that function-
ality is concentrated on space borders and is automatically triggered
whenever a process intersects it. The idea of dual methods is that we
want to separate this functionality depending on the direction in which
the process intersects the border. At the same time we want to have
only one method name for both functions. This allows us to call object
methods by specifying as usual only its method name while one of two

317



A. Savinov

versions will be automatically chosen depending on the relative posi-
tion of the source context. If we are calling the target object method
from outside then one version will be executed. If the method is called
from inside then the other version will be executed.

Using concept inclusion hierarchy this principle means that one of
two versions will be chosen depending on whether the target object
method is called from some its child object (inside) or from any other
object. Thus any object defines a border or scope and if a method call
comes from the side of its child object (lower part in Fig. 5) then the
version defined in reference class is executed. If a method call comes
from the side of its parent object (upper part in Fig. 5) then the version
defined in the object class will be executed. However, in the source
context the method call looks the same. We say that if an object is not
yet reached and its reference is not resolved then the process is outside.
As soon as the object reference is resolved the process intersects the
border and gets inside this scope.

Figure 5. Object methods and reference methods of concepts

Another important idea behind dual methods is that applying a
method to a reference is not considered a specification of concrete code
to be executed. Methods in the concept-oriented programming are
thought of as symbolic names for doors in space borders. Each inter-
mediate border (concept) can define several doors with their symbolic
names and one universal door via continuation method. Each door has
two directions, name and code assigned to it. This code will be auto-
matically executed whenever an access request with this method name
intersects it. Thus method invocation in COP is a way to specify a
door through which it is necessary to go rather than a concrete action

318



Concept as a Generalization of Class and . . .

or code. Reference in this case contains a path to the target.
Below some other properties and uses of dual methods are de-

scribed:

• Object methods are called from parent objects (from outside)
while reference methods are called from child object (from inside).

• Object method is called after complete resolution of its parent
reference, i.e., it is the first method to be executed after this
object reference has been completely resolved. Entering object
method means intersecting this object border.

• Object methods serve external objects while reference methods
serve internal (child) objects.

• Object method can delegate or forward its task to its internal
object and all requests to child objects pass through the parent
objects. This is analogous to intercepting methods of extensions
by base objects in OOP.

• Reference method implements functionality exposed to its child
objects. This is analogous to implementing methods of extensions
using base methods.

• An object accepts method calls from outside using methods of
object class and then serves its child objects by providing methods
of reference class.

One of the most important mechanisms that can be implemented
using dual methods is life-cycle management. At least two functions
are needed to implement this mechanism:

• object initialization/clean up, and

• reference initialization/clean up

Object initialization method is normally called constructor while
object clean up procedure is called destructor. Reference initialization

319



A. Savinov

and clean up procedures do not have their own conventional names be-
cause this mechanism is not part of OOP, which provides RA function-
ality as a default mechanism. In the concept-oriented programming
both types of life-cycle management methods are equally important:
object creation/deletion and reference creation/deletion. In this situa-
tion dual methods are precisely what we need to implement this mech-
anism. Namely, each object class has methods create and delete
which are responsible for construction and destruction (initialization
and cleaning up). On the other hand, each reference class has the
same pair of methods (line 6, 22 for creation and 11, 27 for deletion
in Table 4) that are responsible for reference allocation and deletion.
The reference creation method is applied to a new (empty) instance of
reference class. After return this reference has to contain some correct
value identifying the child object for which it has been created.

Object creation and deletion follow the standard sequence of access
described in the previous section (Fig. 4). An example of reference
creation and deletion is shown in Table 4 (object creation is a con-
structor which simply initializes object fields). Just like the method
of continuation, creation and deletion methods take no parameters
and return no values. Assume that the MyTargetClass is included
into concept B and we create its instance as follows: MyTargetClass
target.create(). This statement is equivalent to the conventional
MyTargetClass target = new MyTargetClass(). Variable target
will contain a reference of parent concept B, i.e., a string identifier as
last segment. In order to initialize this reference the compiler will ap-
ply creation method of B (line 22). This method will generate a unique
string in order to identify new object in the current context (line 23).
Then it allocates a parent reference and calls the same method of cre-
ation to initialize this new empty reference (line 24). Finally the cre-
ation method remembers an association between this id and the parent
reference within the current context (line 25). This information can be
then used whenever this object needs to be accessed, for example, from
reference continuation method.

Line 24 is a reference creation method which is applied to empty
reference of concept A. It is implemented in the same way. First, it

320



Concept as a Generalization of Class and . . .

generates a unique integer (line 7), then it creates a parent reference
(line 8) and finally it remembers an association between them in the
current context (line 9). Line 8 is the most important because here
we create a root reference which directly represents the target object
being created. When line 8 is being executed the target object is really
created at the system level. It is precisely the moment when the target
object constructor (its object creation method) is called. Notice that if
it were a normal business method call then at this moment the compiler
would call the target object method. So the target object constructor
plays the role of normal business method because it is the last method
that is executed in the sequence of access. It is important that object
constructor is executed after its root reference has been created and
before the creation procedure returns. In other words, lines 9 and 25
are executed after the target object constructor.

Reference deletion is performed analogously. If we need to
delete an object then deletion method is applied to its reference:
target.delete(). If the reference consists of several segments then
they need to be resolved as usual starting from high segment and end-
ing with the last low segment which represents the target object. When
the last segment (concept B) is reached, its reference deletion method
is called (line 27 in Table 4). Here we resolve this reference and find its
parent reference of concept A (line 28). Then this parent reference is
deleted by calling the same deletion method of parent concept (line 29).
And finally information about this identifier and the parent reference
is deleted from the context (line 30). After that this reference is invalid
and cannot be used to access the target object. Line 29 is a call of the
parent deletion method (line 11) which works similarly. Line 13 is the
most important here because it is where the root reference and hence
the target object is really deleted (after its destructor).

Table 4. Creation and deletion.

01 concept A in Root
02 class { static Map map; }

321



A. Savinov

03 reference {
04 int id;
05 void continue() { ... }
06 void create() {
07 id = context.getUniqueInteger();
08 Object o.create();
09 context.map.add(id, o);
10 }
11 void delete() {
12 Object o = context.map.get(id);
13 Object o.delete();
14 context.map.remove(id);
15 }
16 }
17 concept B in A
18 class { static Map map; }
19 reference {
20 String id;
21 void continue() { ... }
22 void create() {
23 id = context.getUniqueString();
24 A a.create();
25 context.map.add(id, a);
26 }
27 void delete() {
28 A a = context.map.get(id);
29 A a.delete();
30 context.map.remove(id);
31 }
32 }

322



Concept as a Generalization of Class and . . .

4 Uses of Concepts

4.1 Concept as a Generalized Class

Concept as a programming construct is a pair of one object class and
one reference class with special responsibilities described in the previ-
ous sections. In such a form it is a rather general instrument that has
many possible uses. In other words, concept can be applied in very
different forms in very different programming languages depending on
the goals. One possible application of concepts is interpreting them as
a generalized class. The idea is that the conventional object-oriented
programming languages can be then used as usual except that concepts
are used instead of classes. Concept inclusion is interpreted as a gener-
alized inheritance. Notice that if all concepts have only an object class
with empty reference class then we get the conventional object-oriented
case.

One important new property of the concept-oriented approach is
that each intermediate object in the hierarchy has its own reference
and life-cycle. In contrast, in OOP an object has always only one
reference independent of the number of its base objects. For example,
if class Circle inherits class Figure then in OOP all instances of class
Circle will have a reference which is also valid for its base object
of class Figure. In COP in general case it is not so. For example,
if concept Figure is included into concept Panel then all panels will
have their own unique references which are independent of references
allocated for figures. For each panel identified by some reference there
can be many figures with their own references allocated by its parent
panel. Within one concrete panel, figure objects are identified by their
short (local) references while outside in global scope figures need to
be identified by their long references consisting of two segments. In
larger scope we might need even more segments. For example, if panels
are included into windows then each figure reference consists of three
segments starting from window reference.

Internal objects have also their own independent life-cycle. We can
create and delete internal objects independent of their parent objects.
In OOP it is not so, and creating/deleting an object means creat-

323



A. Savinov

ing/deleting all instances starting from the root class and ending with
the last extension. Independent life-cycle is maintained by means of
dual creation and deletion methods. If a concept is being developed to
maintain its internal coordinate system then it should define the cor-
responding methods for reference creation and deletion that will serve
its child objects. Then its child objects will have references allocated
by the parent which will be also responsible for their resolution via
reference continuation method.

In the concept-oriented programming the role of concepts changes
significantly with respect to the role of classes. The main role of base
classes is object and functionality reuse. This means that base classes
are developed as pieces of generic functionality that can be then in-
herited and extended from child classes. The main role of concept in
COP consists in implementing a scope or space border with associated
functionality. Then any object that is created within this concept in-
herits this behaviour and can use it at run time. Objects are created
and function within a hierarchical space which determines many their
properties. In OOP it is done statically at compile time while in COP
this inheritance of behaviour and influence of context is performed dy-
namically at run time. As a scope or space border any concept has
to behave like an intermediate environment rather than an end point
in OOP. The main goal of such an environment consists in processing
incoming and outgoing access requests (method calls). For example,
a concept might accept an incoming request from outside in its ob-
ject method and after some processing continue its execution in a child
object (delegation):

00 concept Intermediate
01 class {
02 int total=0;
03 int requestCount=0;
04 void someMethod(int amount) {
05 total += amount;
06 requestCount++;
07 continue();
08 requestCount--;

324



Concept as a Generalization of Class and . . .

09 }
10 }
11 reference { ... }

Here we count the number of method calls which are currently be-
ing processed in variable requestCount (line 3) and also sum up all
the method parameters in variable total (line 2). Both variables are
stored in the current context (object class) so we always know how
many internal objects are being currently accessed via this method
(door in the border). Additionally we can determine the sum of all
parameters passed to this method. Line 7 is where we pass this re-
quest to the internal object for additional processing that is specific
to the extension. Here we clearly see that this method implements an
intermediate functionality that is however activated automatically.

4.2 Concept as an Active Namespace

Conventional namespaces are static and passive constructs that extend
class naming system. One interesting use of concepts consists in in-
terpreting concept hierarchy (without target classes) as an active and
dynamic naming system. In contrast to conventional namespaces which
are processed at compile time, active namespaces implemented via con-
cepts exist at run-time. The main idea of this mechanism is that there
exist two roles of concepts: concepts as target classes, and concepts
as namespaces. The former role has been considered in the previous
section while in this section we consider how concepts can be used as
active namespaces. For simplicity we will assume that target concepts
are normal classes (without reference class and other specific features of
concepts). Any target class is included into some active namespace de-
scribed as a concept. However, in contrast to conventional namespaces
this effectively changes their behaviour at run-time because access to
all class instances is intercepted and indirected by its parent names-
paces. Classes included into Root namespace will be accessed directly
without any intervention while each internal namespace will add its
own level of indirection and its own intermediate functionality.

The easiest way to implement active namespaces consists in using

325



A. Savinov

static concepts where object class has only static members and hence
does not produce run-time instances. In this case each namespace
can be declared as one reference class with static members belonging
to object class and non-static members belonging to reference class.
For example, in Table 5 we declare namespace Persistent (line 0).
Its static fields (lines 1) belong to object class while all other (non-
static) members belong to reference class. Any target object with the
class included in Persistent namespace will be identified by a unique
integer value which is supposed to correspond to this object primary
key in a database. Continuation method of this namespace (line 4) is
a reference method. Its task consists in transforming this primary key
into the target object root reference. It has to load the target object
from the database before it can be accessed (line 4) and freeing this
object after the access has been finished (line 6).

Table 5. An example of active namespace.

00 namespace Persistent in Root {
01 static Map map; // Static member (object class)
02 int primaryKey; // Dynamic members (reference class)
03 void continue() {
04 Object o = context.restore(primaryKey);
05 o.continue();
06 context.free(primaryKey, o);
07 }
08 }
09
10 class C in Persistent {
11 void create() { ... } // Constructor
12 void delete() { ... } // Destructor
13 }

Using the mechanism of active namespaces the programming is re-
duced to designing the structure of namespace and then including tar-
get classes into them. The namespace structure accounts for a great

326



Concept as a Generalization of Class and . . .

deal of the program functionality however its functions are used implic-
itly. A target class may change its behaviour depending on its parent
namespace.

4.3 Applications of Concepts

Concepts are useful in applications with complex structure character-
ized by a great deal of intermediate functionality cross-cutting the
whole system. This includes the following technologies and mecha-
nisms:

Access interception. Frequently we need to perform some actions
before the target object is reached. This can be done by defining an
object class method of parent concept which then will intercept all
calls. If it is necessary to intercept all calls then we define object class
continuation method.

Security and object protection. Before an internal child object is
reached we would like to perform some security checks. This can be
done in object methods of parent concepts.

Persistence. Before a target internal object can be accessed it might
need to be loaded from persistent storage or activated in some other
way. This can be done in object class methods as well as in the con-
tinuation method of reference.

Debugging, tracing and logging. Incoming methods can be used for
auxiliary purposes such as controlling access to objects. We can de-
fine special concepts in order to control access to internal classes by
intercepting specified method calls.

Internal services. Each object may define service functions to be
used exclusively from inside by internal objects by means of its outgoing
methods. If classes are included into such concepts then they can use
these services which are not visible from outside.

Memory and life-cycle management. We can use this mechanism to
implement custom memory managers. For example, it might be neces-
sary to create an efficient memory manager for special types of objects
like a hierarchical buffer or a local heap. Persistent storage can also be
viewed as a special type of memory manager.

327



A. Savinov

Layered structure of containers. Concepts effectively define space
borders and serve as run-time containers serving their internal child
objects. Such containers are environments for their objects providing
all the necessary services including life-cycle management.

Remote objects. This mechanism is very suitable for implementing
network protocols and remote method invocation mechanisms. Con-
cept can be responsible for network communication and reference reso-
lution. Its incoming methods accept remote calls while outgoing meth-
ods provide local services for internal objects as a local context.

Protocol stacks. The hierarchical structure of concepts can be used
to implement the mechanism of protocol stack which is especially useful
for distributed systems. In this case a reference class describes a packet
header with information about the target object position. A complex
reference is viewed as a nested structure of packet headers. The first
high segment of the complex reference is the first header of the external
packet. The body of this packet starts from the second segment of
the reference and so on. Each intermediate segment (internal packet
header) represents one intermediate context. Concepts allow us to
create custom protocol stack for each individual program and then use
it transparently.

Lazy creation and deletion. Here object reference is initialized with-
out the real object creation. For example, we could simply generate
a unique text string as object reference and exit. And only when this
object is really accessed (and we cannot resolve the string identifier)
the continuation method performs the rest of the creation procedure.

Transactionality. It is convenient to develop concepts which are re-
sponsible for performing operations with internal objects as one trans-
action. In particular, such a concept will automatically and transpar-
ently begin a transaction for each incoming access request and end this
transaction after the access is finished.

Synchronization and multi-threading. Concepts can be used to im-
plement a complex mechanism of synchronized access to some internal
resources. For example, such a concept can guarantee that only one
process accesses one object. It will store a list of objects being cur-
rently accessed as well as a queue for processes waiting at the border

328



Concept as a Generalization of Class and . . .

(in front of the door).

5 Related Work

An approach described in this paper is being developed within a new
paradigm which covers several branches in computer science including
programming, data modelling [1,2,3] and system design. The concept-
oriented paradigm is based on several general principles that distinguish
it from the currently existing theories and approaches. In the context of
programming the most important concept-oriented assumption is that
system functionality is concentrated on space borders. In contrast,
in object-oriented paradigm it is assumed that most of functionality is
concentrated in objects themselves. Concept as the main programming
construct allows the programmer to describe effectively not only what
happens in objects but simultaneously what happens when they are
being accessed.

The concept-oriented programming can be considered a continua-
tion of a very general and deep principle of Separation of Concerns
formulated by Dijkstra [4]. The main idea of this principle is that any
problem or system functionality can be viewed from different points
of views or concerns. One specific feature of our approach is that we
distinguish two main concerns any program consists of: BMs and RA.
Currently there exist different techniques for separating business meth-
ods from representation and access functionality but they can be broken
into two main categories: methods based on dedicated middleware and
approaches based on programming languages.

The idea of middleware-based approaches consists in creating spe-
cial software and hardware environments where a conventional program
will run. Such an environment offers a number of functions that are
intended to support custom RA functionality. This special environ-
ment can exist and be accessible to running programs in very different
forms, for example, as part of an operating system, an object container,
a service, a dynamically or statically linked library etc. However, the
main property of this approach is that the programming language re-
mains the same while the support is provided by developers of the

329



A. Savinov

middleware. In particular, it is not easy to develop a new custom en-
vironment or adapt the existing environment to the purposes of each
concrete program.

One wide-spread class of middleware is techniques for remote pro-
cedure calls. Examples of such middleware platforms are CORBA and
RMI/EJB [5,6]. Such an environment provides facilities for creating re-
mote references and then making transparent method calls. Although
such an approach provides much more flexibility in comparison with the
manual remote method invocation, they still have serious limitations.
First of all we are not able to change the format of remote references
and the underlying invocation protocol. Such middleware platforms
may fit well to the purposes of one system but may be inappropriate
for another system. Their adaptation possibilities are very limited and
such an environment is separated from the rest of the program.

A more flexible approach to separating two concerns consists in us-
ing reflective environments and metaobject protocols [7,8,9]. The idea
of this approach consists in providing a mechanism for changing the
behavior of the language from this very language. Normally program-
ming languages are defined in such a way that their behavior cannot be
changed. In particular, we cannot change how objects are represented
and accessed because it is defined at the level of the language envi-
ronment. The reflective approach allows the programmer to change
this environment and to influence its behavior. Such an approach can
be viewed as an intermediate between middleware and programming
languages because on one hand the programming language (reflective)
environment is separated from the language itself like in middleware
approaches. On the other hand, the programming language has special
constructs for influencing and changing the environment where it will
run.

In the approaches based on programming languages an environment
is created within the language itself and using this very language. In
other words, the program is responsible for creating and maintaining
its own run-time environment. The functionality, which is normally
implemented in some standard middleware, is now an integral part of
the program written in the same programming language as the rest of

330



Concept as a Generalization of Class and . . .

the system.
One wide-spread technique to automating intermediate RA func-

tions consists in using static or dynamic proxies [10]. Proxy is a special
class that emulates an interface of the corresponding target class but
inserts some intermediate functionality. These intermediate functions
of the proxy class are called before target methods and hence they ef-
fectively intercept all target object method invocations. The trick here
consists in using proxy class instead of the target class. Thus it is not a
real interception but rather a normal sequence of method calls. In other
words, in the source context a reference to the proxy instance is created
and hence its methods are called when it is used. Then it is the task
of the proxy to decide what to do if some its method has been called.
Normally, after some processing the corresponding target method is
called. One disadvantage of this approach is that it requires significant
manual support and is not very general. It is more a special technique
or programming pattern rather than a programming paradigm. Here
are other disadvantages of this approach:

• If a target class changes we need to manually change its proxy
class.

• For each target class we need to develop its own proxy while in
many cases proxy functions are rather general and can be used
by many target classes.

• It is difficult to impose behaviour in a nested manner (creating a
proxy for proxy).

• It is difficult to develop custom references which are stored by
value instead of native references.

An interesting solution to the problem of developing custom ref-
erences and intermediate behaviour consists in using smart pointers
in C++ [11]. However, it is also a specific technique rather than a
general programming approach. A more general solution consists in
using the mechanism of annotations. The idea of this approach (called
attribute-oriented programming) consists in marking places in code

331



A. Savinov

where some intervention is needed by special tags. Other related ap-
proaches that can be used to automate intermediate RA functionality
are mixins [12,13], subject oriented programming [14] and multidimen-
sional separation of concerns [15]. All these methods allow the pro-
grammer to specify how behavioural granules (concerns) have to be
distributed throughout the system.

Probably the most interesting approach to solving the problem of
separation of concerns is aspect-oriented programming (AOP) [16]. As-
pects describe intermediate functionality (and data) injected into the
points in the program which are specified by means of regular expres-
sion. Thus aspect can be viewed as a special programming construct
that modularize intermediate functionality. An important property of
this approach is that aspects know explicitly the points where the in-
termediate functions will be injected while the target classes do not
know what other code will modify their behaviour (Fig. 6). Such a
structure of relationships between the module with the code to be in-
jected and the modules where it has to be injected can be viewed as
declaring in an aspect all the target classes (the target classes being
unaware of this aspect). In this sense our approach is characterized
by the opposite direction of this relationship (see DG5). Namely, the
module with the code to be injected is unaware of the points where it
will be used (the target modules). These are the target modules that
declare the modifications they need.

6 Conclusions

In the paper we introduced a new programming construct called con-
cept. Concept is defined as a pair of one object class and one refer-
ence class having their own fields and methods (possibly with the same
name). Concepts are organized into a hierarchy using inclusion relation
with the main purpose to specify how objects have to be represented
and accessed. The main idea is that an object is represented by its par-
ent reference which replaces a system default reference. An approach
to programming based on this new construct is called concept-oriented
programming. This approach assumes that a system consists of two

332



Concept as a Generalization of Class and . . .

Figure 6. Aspect-oriented programming vs. concept-oriented program-
ming

types of functionality: target BMs and intermediate RA functional-
ity. Accordingly, it is important to be able to implement both types
as an integral part of one program using one programming language.
This new approach to programming can be applied to very different
complex problems such as access control and interception, security and
object protection, persistence, debugging, tracing and logging, mem-
ory and life-cycle management, containers, remote objects, distributed
computing, protocol stacks and many others.

References

[1] Savinov, A. Principles of the Concept-Oriented Database Model,
Institute of Mathematics and Informatics, Academy of Sciences of
Moldova, Technical Report, 54pp., November 2004.

[2] Savinov, A. Hierarchical Multidimensional Modelling in the
Concept-Oriented Data Model, Proc. the 3rd international con-
ference on Concept Lattices and Their Applications (CLA’05),
Olomouc, Czech Republic, September 7-9, 2005, 123–134.

333



A. Savinov

[3] Savinov, A. Grouping and Aggregation in the Concept-Oriented
Data Model, ACM Symposium on Applied Computing (SAC
2006), April 23-27, 2006, Dijon, France (accepted).

[4] Dijkstra, E.W. A Discipline of Programming. Prentice Hall, 1976.

[5] Roman, E., Sriganesh, R.P., Brose, G. Mastering Enterprise Java
Beans. Wiley; 3 edition.

[6] Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/

[7] Cazzola, W., Ancona, M. mChaRM: a Reflective Middleware for
Communication-Based Reflection. Technical Report DISI-TR-00-
09, DISI, Universita degli Studi di Genova, May 2000. 29 pages.

[8] Kiczales, G., Rivieres, J., Bobrow, D.G. The Art of the Metaobject
Protocol. MIT Press, Cambridge, 1991.

[9] Kiczales, G., Ashley, J.M., Rodriguez, L., Vahdat, A., Bobrow,
D.G. Metaobject protocols: Why we want them and what else
they can do. In: Paepcke, A. (ed.) Object-Oriented Programming:
The CLOS Perspective, 101–118, The MIT Press, Cambridge, MA,
1993.

[10] Blosser, J. Explore the Dynamic Proxy
API, Java World, November 2000.
http://developer.java.sun.com/developer/technicalArticles/
DataTypes/proxy

[11] Stroustrup B. The C++ Programming Language, Second Edition,
Addison Wesley, 1991.

[12] Smaragdakis, Y., Batory, D. Implementing layered designs with
mixin-layers. Proc.ECOOP’98, 550–570, 1998.

[13] Bracha, G., Cook, W. Mixin-based inheritance. Proc. OOP-
SLA/ECOOP’90, ACM SIGPLAN Notices, 25(10), 303–311, 1990.

334



Concept as a Generalization of Class and . . .

[14] Subject-Oriented Programming, http://www.research.ibm.com/
sop

[15] Multi-Dimensional Separation of Concerns,
http://www.research.ibm.com/hyperspace/MDSOC.htm

[16] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M. and Irwin, J. Aspect-Oriented Programming,
Proc. ECOOP’97, LNCS 1241, 220–242, Jyvaskyla, Finalnd, 1997.

Alexandr Savinov, Received December 21, 2005
Institute of Mathematics and Informatics,
Academy of Sciences of Moldova
str. Academiei 5,
MD-2028 Chisinau, Moldova
E–mail: savinov@conceptoriented.com
Home page: http : //conceptoriented.com/savinov

335


