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INTRODUCTION  

With the explosion of data volume and the variety of data sources (Cohen et al., 2009) – two aspects 

of the big data problem - we observe quite significant difficulties in applying conventional data 

analysis methodologies to real world problems. The existing technologies for data management and 

analytics were pushed to the limits of their ability to solve more and more complex analysis tasks:  

 Agile analytics. Perhaps the most widely used methodology for data analysis during several 

decades is based on the multidimensional metaphor where data is viewed as existing in a 

multidimensional space. A problem of this approach is that it is based on application-specific 

scenarios with predefined roles of dimensions, measures, cubes and facts. Changing such 

scenarios is a quite difficult task because they are embedded in both database systems and client 

software. The goal of agile analytics consists in going beyond standard OLAP analysis by 

facilitating exploratory ad-hoc analytics where the user can freely vary all data processing and 

visualization parameters.  

 Self-service analytics. The conventional approach to analysis is to approach IT department which 

however has several drawbacks: business frequently does not trust data provided by IT, IT is 

unable to understand the needs of the user (and this leads to frustration and low motivation), IT 

might not be able to respond to user requests as quickly as is desirable (and the requirements may 

well change during the response time), existing BI tools are not intended for non-professional 

users. Self-service analytics is one of the most significant trends in the BI industry over the last 

few years and these tools aim to give non-professional users the ability to solve analytical tasks 

with little or no help from IT.  

 Near real time analytics. It may take days to generate a BI report in a typical enterprise system 

and there is strong demand in reducing the time between data acquisition and making a business 

decision. One of the core problems is that traditional systems are based on two separate 

technology stacks: for transactional workload and for analytical workload. The design principles 

and techniques of these two subsystems are quite different and they cannot provide the necessary 

response time and agility of decision making on large volumes of data (Chaudhuri, Dayal, & 

Narasayya, 2011; Thiele & Lehner 2012). Although modern hardware provides a basis for a new 

generation of in-memory, columnar databases (Boncz, 2012; Larson, 2013) with potentially higher 

query performance on analytical workloads, it is important to understand that real time analytics is 

not a hardware problem - new data models, new query languages, new analysis scenarios, new 

analysis algorithms are needed.  

 Semantic analysis. The conventional approach is that it is the task of the human analyst to 

understand the meaning of data while the system has to only execute precise queries. However, a 

typical enterprise system can contain tens of thousands data tables and open systems can involve 

numerous external data sources. In this situation it is extremely difficult to get meaningful results 

manually. Existing solutions add semantics via a separate layer which is based on quite different 

data modeling and analysis techniques. This leads to complex mappings and translations at all 

levels of the system architecture.  

 Reasoning about data. The goal of this type of analysis is to answer questions by automatically 

deriving them from the available data. This task has been a prerogative of the systems based on 

formal logic which have several drawbacks: formal logic is not natural for expressing analysis 

tasks, formal logic is not very suitable for numeric analysis, formal logic requires a separate 

system because it is not directly compatible with available data storage, queries in formal logic are 

computationally expensive.  

 Analytical computations. Analysis is not limited by the operations of grouping and aggregation. 

Now analysts need to embed arbitrary computations in their analysis tasks. Such tasks are 
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normally expressed as batch jobs where data is exported from one or many databases and then 

processed using an analysis program. Executing arbitrary analysis tasks close to the data (ideally 

directly where data resides) is still a big problem. It is actually a new incarnation of the old 

problem of incompatibility between programming and data modeling (impedance mismatch) 

because data is modeled and manipulated differently in programming languages and databases.  

These fundamental challenges require a principled solution rather than yet another specific 

technique. Many of the above problems can be solved at the level of a unified data model which 

should be general enough to cover major analytical patterns of thought, and at the same time should it 

be simple and natural. In this article we describe a novel query language, called the concept-oriented 

query language (COQL), which addresses the above issues and is aimed at radically simplifying 

typical data analysis and data modeling tasks. COQL is a syntactic description of the concept-oriented 

model (COM) (Savinov, 2009, 2011) and it has the following distinguishing features:  

 COQL replaces joins as a means of connectivity by a novel arrow notation which can be viewed 

as a set-oriented analog of dot notation  

 COQL replaces group-by operation by a novel operation of de-projection  

 COQL introduces a novel mechanism of inference based on the multidimensional structure of data 

instead of using logical inference  

 COQL inherently supports dimensions as a basic construct rather than treating them as something 

optional that is added for specific kinds of analysis  

 COM and COQL support several data modeling and analysis paradigms (relational, 

multidimensional, entity-relationship, semantic and conceptual, object-oriented) by resolving 

many incompatibilities and controversies as well as increasing semantic integrity of data models 

and analysis tasks  

 COQL relies on a novel data typing construct, called concept, and two relations: inclusion and 

partial order.  

 

BACKGROUND  

A language reflects main principles of the underlying model or paradigm using syntactic constructs 

and rules. It is valid for programming languages, query language, conceptual languages and for other 

areas where a theory can be described syntactically. Below we describe major language categories 

used for data querying with the focus on data analysis, connectivity and set operations.  

Join-based languages. It is probably the most wide spread class of query languages which rely 

on the join operation as connectivity means. The most wide spread version of this class is SQL query 

language developed within the relational model of data (Codd, 1970). Yet, it is important to 

understand that join is a variant of a more general approach used in formal logic and consisting in 

binding free variables. This method can be also characterized as “common value” approach: two 

things are supposed to be related if they share some common value. It has numerous advantages but 

probably the most important one in the context of data management is that join is an operation on sets. 

It also has quite significant drawbacks (Savinov, 2012a): join is a low level and error-prone operation 

which requires high expertise (Atzeni, 2013), joins can easily produce meaningless results because it 

lacks semantics, join exposes the mechanics of connectivity at the level of business logic and is a 

typical cross-cutting concern, join is not analytics-friendly.  

Deductive query language. These languages are designed to be as close as possible to the 

underlying formalism (normally first-order predicate logic) and their goal is to provide a full-featured 

mechanism of inference. They were traditionally used in deductive databases (Ullman & Zaniolo, 

1990) but currently an interest to these languages grows with the development of such technologies as 

Semantic Web and Linked Open Data which are based on Description Logics. This approach has the 

following drawbacks: it is not very intuitive and requires high expertise, it lacks structure because all 

predicates and sets have the same level, it is not very suitable for multidimensional and numeric 

analysis.  

Graph-based languages. These languages (Wood, 2012) belong to the class of navigational 

languages because their connectivity mechanism is based on the notion of path in some structure. 



 3 

These paths can be followed in different directions and used for retrieving graph nodes and edges. The 

most common operations in graph databases is graph traversal which plays approximately the same 

role as joins. These languages have always been very natural and very easy to use but they are not very 

compatible with the dominating relational model, provide limited structuring mechanisms, have 

limited semantics and not directly designed for numerical and multidimensional analysis.  

Object-oriented query languages. The main focus of this approach (Dittrich, 1986; Atkinson 

et al., 1990) is to support programming models and its development was driven by the need to 

decrease or even eliminate the differences between data modeling and programming. Object-oriented 

query languages rely on class descriptions and dot notation for navigation purposes. However they are 

more instance-oriented and provide weaker support for set operations in comparison to other models. 

In particular, very natural and convenient dot notation is not suitable for set operations.  

Multidimensional query languages. Languages like MDX are used in the context of standard 

OLAP models (Li & Wang, 1996; Pedersen & Jensen, 2001) for solving analytical tasks. This 

approach is based on the notions of dimension, measure, facts and cube. It is intended for numerical 

and multidimensional analysis but not directly compatible with other paradigms. Therefore, data 

management is normally broken into two areas: managing transactional data (relational database) and 

managing analytical data (data warehouse).  

Other analytical query languages. There are several new empirical approaches to self-service 

agile analytics implemented in software products. One of them is a novel Tabular data model and its 

native query language, called Data Analysis eXpressions (DAX). These technologies are part of the 

Business Intelligence Semantic Model (BISM) implemented in Microsoft SQL Server 2012 Analysis 

Services (Russo, Ferrari, & Webb, 2012) and supported in some client products like PowerPivot. The 

goal of this approach is to provide an analytical model for all user experiences by significantly 

simplifying typical analysis tasks and facilitating self-service analytics. This technology eliminates the 

need in and limitations of the conventional multidimensional models by providing an expression 

language for arbitrary computations over available data. There exist also quite many empirical query 

languages developed within NoSQL approach (Mohan, 2013). However, they are normally either too 

specific implementations based on the features of the underlying database or adaptations of other 

approaches.  

 

CONCEPTS AND INCLUSION RELATION  

Concepts  

COM introduces a novel type modeling construct, called concept. Concept is defined as a couple of 

two classes: one identity class and one entity class. The main difference between them is that instances 

of an identity class are passed by-value and instances of an entity class are passed by-reference. 

Passing an entity by-reference means that the coupled identity is copied instead of the entity. There are 

two particular cases of concepts which produce traditional typing constructs:  

 if entity class is empty then concept describes values (identity instances are values)  

 if identity class is empty then it is equivalent to traditional classes instances of which are objects 

represented by primitive references  

For example, if colors are represented as values then they are described by a concept with the 

empty identity class:  

CONCEPT ColorValue //Instances are values  

  IDENTITY  

    INTEGER red, green, blue  

  ENTITY // Empty  

If colors have to be passed by-reference (in order to be shared among many other elements) then their 

fields are described in the entity class:  
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CONCEPT ColorObject //Instances are objects  

  IDENTITY // Empty  

  ENTITY  

    INTEGER red, green, blue  

In the general case, both constituents are not empty so that elements may have arbitrary 

domain-specific identity and arbitrary entity structure. For example, existing data models do not allow 

us to define colors as elements identified by name (passed by-value) and having three constituents 

passed by-reference:  

CONCEPT Color  

  IDENTITY  

    CHAR(10) name  

  ENTITY  

    INTEGER red, green, blue  

Once a concept has been defined, it can be used as a type of variables, fields, parameters and 

other (typed) elements. These elements will store a value in the format of the identity class and 

provide access to the values stored in the entity. Concepts are also used to define sets of elements. A 

set in COQL is written as some concept name in parentheses. For example, a set of colors is written as 

(Color). A subset is specified by providing a constraint on its elements which is written as a logical 

expression separated by bar symbol. For example, the following set contains only red colors: (Color 

| green=0 && blue=0).  

One of the most important benefits of the concept-oriented approach is that it generalizes and 

simplifies the object-relational model by unifying domain modeling and relation modeling. In COM, 

concepts define only one kind of sets where elements (concept instances) are identity-entity couples 

while existing approaches use two different kinds of sets: domains consisting of values and relations 

consisting of tuples. Note also that identities are different from the mechanism of (primary) keys. 

Identities can be viewed as surrogates with arbitrary domain-specific structure while keys are entity 

attributes with a special role. A concept can be thought of as a description of computer memory where 

user-defined addresses are used to access user-defined cells. Concepts are also informally analogous to 

complex numbers in mathematics which also have two constituents but are manipulated as one whole.  

 

Inclusion  

COM provides a novel relation, called inclusion, which is applied to concepts and is used instead of 

the classical inheritance. Any concept (except for a root) is included in some other concept so that all 

concepts exist in a hierarchy. A parent concept in the inclusion hierarchy is referred to as a super-

concept and child concepts are referred to as sub-concepts. Inclusion relation among concepts is 

interpreted as IS-IN relation which means that many instances of a child concept are contained within 

one instance of the parent concept.  

Elements are still identified by their identities but now these identities extend parent identities 

which in turn extend their parent identity and so on up to the root which represents the whole space of 

elements. Inclusion in COM is similar to the hierarchical XML structure where parent elements 

contain child elements directly by-value. A fully-specified identity of an element is a value which 

consists of several segments starting from the root and ending with the identity of this element. Thus 

inclusion relation allows us to model containment with hierarchical address space. For example, if 

bank accounts are identified with respect to their bank (one bank has many accounts) then concept 

Account has to be included in the Bank concept:  

CONCEPT Account IN Bank // Exists in bank  

  IDENTITY  

    CHAR(10) accNo // Extends identity of Bank  

  ENTITY  

    DOUBLE balance  
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If entity class is empty then inclusion is equivalent to value extension and can be used to 

define more specific value types. If identity class is empty then inclusion is equivalent to classical 

inheritance where additional fields can be added to an existing entity. When applied to relations, 

inclusion provides a mechanism for their extension by defining more specific relations on the basis of 

more general ones.  

The use of concept inclusion significantly diminishes the differences between relational and 

object-oriented modeling because concepts provide a common mechanism for modeling 

simultaneously value domains and relation types. In the general case, both concepts and their instances 

exist in a hierarchy where parents are shared parts of children (like in prototype-based programming). 

For example, a bank has many accounts and an account might have many sub-accounts like savings 

accounts. Thus COM inclusion eliminates the asymmetry between classes and instances so that a 

concept hierarchy directly models instance hierarchies. Note also that IS-A relation in COM is a 

particular case of IS-IN relation which means that to be included in some set means to inherit the 

properties and behavior of this set (members of a set are more specific elements than the set they are 

in).  

 

DATA MANIPULATION AND ANALYSIS  

Logical Navigation and Arrow Notation  

COQL uses arrow notation (Savinov, 2012a) for navigating through the data structure and retrieving 

sets of elements. Arrow notation can be viewed as a set-oriented analogue of the conventional dot 

notation. If dot operation is applied to instances then arrow operations are applied to sets. Another 

difference is that arrow notation provides two versions: for moving along attributes and for moving in 

the opposite direction against attributes. Since all concepts and elements in COM are partially ordered, 

this is interpreted as moving up or down in the partially ordered set of elements. Also, they are 

interpreted as moving between layers of detail.  

The operation of projection, denoted by right arrow, is applied to a set of elements and returns 

a subset of elements which are referenced from the source elements by the specified attribute. For 

example (Fig. 1), given a set of books we can find all their publishers by projecting them along the 

publisher attribute:  

(Book | date > '01.01.2005')  

  -> publisher -> (Publisher)  

 

  

Figure 1. Projection and de-projection. 

 

De-projection is the opposite operation denoted by left arrow. It returns a set of elements from 

the target set which reference the elements of the source set. For example (Fig. 1), given a set of 

publishers we can de-project them and find all the books they published:  

(Publisher | name = 'XYZ')  

  <- publisher <- (Book)  

These operations serve for logical navigation in COQL (Savinov, 2006a). The general idea is 

that constraints are imposed in some part of the schema and then propagated to another part of the 

schema using a zig-zag attribute path composed of projections and de-projections. For example 

(Fig. 2), we could easily find all writers of a publisher by applying two de-projections followed by 

projection:  

Books  

Publishers  

publisher 

(Books)  

  -> publisher  

  -> (Publishers) 

(Publishers)  

  <- publisher  

  <- (Books)  
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(Publisher | name = 'XYZ')  

    <- publisher <- (Book)  

    <- book <- (BookWriter)  

    -> writer -> (Writer)  

 

  

Figure 2. Logical navigation. 

 

Taking into account semantic interpretations of partial order in COM, projection means 

getting all coordinates of the source points, finding all more general elements than the source 

elements, and all containers for the source elements. De-projection is interpreted as getting all points 

having the source coordinates, finding all more specific elements for the source elements, and all 

members of the source containers.  

One of the main benefits of these two operations is that they eliminate the need in join and 

group-by operations. Joins are not needed because sets are connected using multidimensional 

hierarchical structure of the model. Group-by is not needed because any element is interpreted as a 

group consisting of its lesser elements. Given an element (group) we can get its members by applying 

de-projection operation. For example, if it is necessary to select only publishers with more than 10 

books then it can be done it as follows:  

(Publishers |  

  COUNT(publisher <- (Books)) > 10)  

Here de-projection publisher <- (Books) returns a group of books of this publisher and then 

their count is compared with 10.  

 

Constraint Propagation and Inference  

An important application of projection and de-projection operations consists in propagating arbitrary 

constraints through the model structure. Constraints are specified as a source set of elements. The 

propagation path is specified as a sequence of attributes and intermediate sets leading to the target set 

the elements of which have to be retrieved. In many cases intermediate attributes and sets can be 

omitted and then the system will reconstruct the propagation path. Such projection and de-projection 

with an undefined dimension path is denoted by '*->' and '<-*' (with star symbol interpreted as 

any dimension path). For example (Fig. 3), given a collection of Books we can find all related 

Addresses using the following projection query:  

(Books | price < 10) *-> (Addresses)  

This query is translated into the following query where the propagation path is written explicitly:  

(Books | price < 10)  

  -> publisher -> (Publishers)  

  -> address -> (Addresses)  

 

Books  Writers 

Publishers  

book 

WriterBook  

writer 

(Publishers)  

  <- publisher  

  <- (Books)  
publisher 

(Books)  

  <- book  

  <- (WriterBook)  

(WriterBook)  

  -> write  

  -> (Writers)  
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Figure 3. Constraint propagation. 

 

This query can be reversed and then it will return all Books related to the selected Addresses:  

(Addresses | country == 'DE') <-* (Books)  

The above queries are examples of propagating constraints in only one direction and they are 

restricted versions of inference. In the general case, source and target sets may have arbitrary locations 

in the schema and then this approach does not work because they are not connected by a projection or 

de-projection path. To solve this problem of propagating constraints between arbitrary sets, COQL 

propose a special solution which is based on inference operator denoted as '<-*->' (de-projection 

step followed by projection step via an arbitrary dimension path). It connects two sets from the 

database and finds elements of the second set which are related to the first one. This approach assumes 

that source and target sets have some common lesser set which is treated as a relationship between 

them (or a fact set in OLAP terms). Constraints imposed on the source set are de-projected down to 

this lesser set by selecting a subset of its elements. And then the selected elements are projected up to 

the target set.  

For example (Fig. 4), given a set of young writers we can easily find related countries by 

using only one operator:  

(Writers | age < 30)  

  <-*-> (Addresses) -> countries  

 

  

Figure 4. Inference. 

 

To answer this query, the system first chooses a common lesser collection, WriterBooks in this 

example, and then transforms this query to two operations of de-projection and projection:  

(Writers | age < 30)  

  <-* (WriterBooks) // De-project  

  *-> (Addresses) -> countries // Project  

After that, the system reconstructs the complete constraint propagation path:  

Books  Writers 

Publishers  

book 

WriterBook  

writer 

Addresses  

publisher 

address 

(Books) *-> (Addresses) 

Books  Writers 

Publishers  

book 

WriterBook  

writer 

Addresses  

publisher 

address 

 

 

(Writers | age < 30)  

   <-*-> (Addresses)  

   -> countries 
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(Writers | age < 30)  

  <- writer <- (WriterBooks)  

  -> book -> (Books)  

  -> publisher -> (Publishers)  

  -> address -> (Addresses) -> countries  

If there are no common lesser sets or there are more than one such set then it is possible to 

provide more information in the query that the system can use for inference as described in (Savinov, 

2006b, 2012b).  

 

Product Operation for Multidimensional Analysis  

Navigational operations of projection and de-projection are intended for retrieving data that already 

exists in the database. However, in many cases it is necessary to generate new data elements. This task 

is supported by the product operation which returns all combinations of elements from source sets 

specified as parameters. In COQL, product is written as a number of sets enclosed in parentheses and 

optionally prefixed by the CUBE or PRODUCT keyword. For example (Fig. 5), given two source 

collections with countries and product categories we can produce a 2-dimensional set where every 

element is a combination of one country and one produce category:  

ResultCube =  

  CUBE (Countries, Categories)  

 

  

Figure 5. Multidimensional analysis. 

 

The main application of the product operation is multidimensional analysis where the task is 

to group facts over cells of the cube and then compute some numeric aggregated characteristic 

(measure) for this group (Savinov, 2005). Grouping is performed by de-projecting a cell down to the 

facts. This group is then passed to an aggregation parameter and all these operations are performed for 

each element of the cube in the BODY block. For example, sales over countries and categories can be 

computed using the following query:  

  CUBE(Countries co, Categories ca)  

  BODY {  

    cell = co <-* Sales AND  

           ca <-* Sales  

    measure = SUM(cell.amount)  

  }  

  RETURN co.name, ca.name, measure  

The group of sale facts belonging to one cell (one country and one category) is computed by 

de-projecting the current country and category down to the Sales fact collection and then finding 

their intersection (denoted by AND). Then all sales are summed up within one cell of the cube using 

only one numeric dimension for aggregation. Finally, the value computed for this country and this 

category is returned in the result.  

 

Product Order 

Country 

category 

product 

country 

Sales 

order 

Category 

Fact collection  

Level 
concept  

Level 
concept  

CUBE 
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FUTURE RESEARCH DIRECTIONS  

Currently there is strong demand in more expressive query languages providing not only some built-in 

analytical operators but rather inherently supporting analytics as their primary goal. COQL follows 

this long term goal by trying to revisit how analytics is done and by radically simplifying typical 

analytical and other data management tasks. Such a next generation query language should be much 

closer to traditional programming languages which allow for implementing arbitrary business logic 

and arbitrary data manipulations. Such a unification of programming and query languages could be 

done on the basis of concept-oriented programming (Savinov, 2012c) which is also based on the same 

principles as COQL.  

Another direction for future research consists in using COQL for conceptual modeling. Here 

the challenge is to eliminate differences between logical and conceptual levels of modeling. COQL 

already provides significant support for modeling relationships and in future more mechanisms and 

patterns for conceptual modeling should be integrated into it. Representing data semantics as well as 

reasoning about data are also considered important directions for future research.  

 

CONCLUSION  

The concept-oriented model and query language is a step towards developing a unified approach to 

data management and analytics which provides equal support for transactional, analytical and 

conceptual views on data as well as addresses other issues: agile and self-service analytics, semantics 

and reasoning, near-real-time analytics and analytical computations close to the data. COM and COQL 

take a holistic view on data by unifying a wide range of existing data modeling approaches and 

reducing them to only three major principles: duality, inclusion and partial order. COQL is a rather 

simple and natural language in comparison to existing query languages but on the other hand it is a 

rather powerful language which introduces several significant changes to the way data is represented, 

queries and analyzed:  

 COQL removes such predefined roles as dimension, measure, fact, and cube from the model. At 

the same time, these roles can still be assigned to elements depending on the necessary result. The 

benefit is that the model remains inherently multidimensional and analytical but without 

constraints imposed by the OLAP approach to analysis.  

 COQL introduces arrow notation as the main connectivity mechanism replacing joins. The benefit 

is that the details of connections are effectively hidden by retaining the set-orientation of joins and 

simplicity of dot notation.  

 COQL relies on partial order relation for representing da semantics. This makes the whole 

approach very natural because the data modeling constructs directly correspond to the real things 

and business notions they represent. It also makes this approach very general because partial order 

can represent many existing semantic constructs and models: entity-relationship modeling, 

multidimensional modeling, levels of detail, object-oriented modeling and inheritance, 

containment relation. The main benefit is that this significantly simplifies data management and 

analytics by eliminating or reducing many incompatibilities which stem from a large number of 

diverse data modeling techniques and patterns. 

 COQL provides inference capabilities as an inherent part of the query languages without adding 

new constructs but rather relying only on the multidimensional setting and semantic interpretation 

of the partial order relation. The benefit is that it allow for not only doing complex numeric 

analysis but also performing tasks which have always been a prerogative of logic-based models. 

 

REFERENCES  

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., & Zdonik, S. (1989). The object-

oriented database system manifesto. In Proc. 1st Int. Conf. on Deductive and Object-Oriented 

Databases (pp. 223-240).  

Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L., & Torlone, R. (2013). The relational model is 

dead, SQL is dead, and I don’t feel so good myself. ACM SIGMOD Record, 42(2), 64-68.  



 10 

Boncz, P. (Ed.) (2012). Column store systems [Special issue]. IEEE Data Eng. Bull., 35(1).  

Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of Business Intelligence technology. 

Communications of the ACM, 54(8), 88-98.  

Codd, E.F. (1970). A relational model of data for large shared data banks. Communications of the 

ACM, 13(6), 377-387.  

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., & Welton, C. (2009). Mad skills: New analysis 

practices for big data. In Proc. 35th International Conference on Very Large Data Bases (VLDB 2009) 

(pp. 1481-1492).  

Dittrich, K.R. (1986). Object-oriented database systems: The notions and the issues. In Proc. Intl. 

Workshop on Object-Oriented Database Systems (pp. 2-4).  

Larson, P. (Ed.) (2013). Main-memory database systems [Special issue]. IEEE Data Eng. Bull., 36(2).  

Li, C., & Wang, X.S. (1996). A data model for supporting on-line analytical processing. In Proc. 

Conference on Information and Knowledge Management (pp. 81-88). Baltimore, MD.  

Mohan, C. (2013). History repeats itself: Sensible and NonsenSQL aspects of the NoSQL hoopla. In 

Proc. EDBT 2013 (pp. 11-16).  

Pedersen, T.B., & Jensen, C.S. (2001). Multidimensional database technology. IEEE Computers, 

34(12), 40-46.  

Russo, M., Ferrari, A., & Webb, C. (2012). Microsoft SQL Server 2012 Analysis Services: The BISM 

Tabular Model. Microsoft Press.  

Savinov, A. (2012a). References and arrow notation instead of join operation in query languages. 

Computer Science Journal of Moldova (CSJM), 20(3), 313-333.  

Savinov, A. (2012b). Inference in hierarchical multidimensional space. In Proc. International 

Conference on Data Technologies and Applications (DATA 2012) (pp. 70-76).  

Savinov, A. (2012c). Concept-oriented programming: Classes and inheritance revisited. In Proc. 7th 

International Conference on Software Paradigm Trends (ICSOFT 2012) (pp. 381-387).  

Savinov, A. (2011). Concept-oriented query language for data modeling and analysis. In L. Yan & Z. 

Ma (Eds), Advanced database query systems: Techniques, applications and technologies (pp. 85-101). 

IGI Global.  

Savinov, A. (2009). Concept-oriented model. In V.E. Ferraggine, J.H. Doorn, & L.C. Rivero (Eds.), 

Handbook of research on innovations in database technologies and applications: Current and future 

trends (2nd ed., pp. 171-180). IGI Global.  

Savinov, A. (2006a). Query by constraint propagation in the concept-oriented data model. Computer 

Science Journal of Moldova (CSJM), 14(2), 219-238.  

Savinov, A. (2006b). Grouping and aggregation in the concept-oriented data model. ACM Symposium 

on Applied Computing (SAC 2006) (pp. 482-486).  

Savinov, A. (2005). Hierarchical multidimensional modelling in the concept-oriented data model. 

Proc. 3rd international conference on Concept Lattices and Their Applications (CLA’05) (pp. 123-

134).  

Thiele, M., & Lehner, W. (2012). Real-TimeBIand Situational Analysis. In M.E. Zorrilla, J.-

N. Mazón, Ó. Ferrández, I. Garrigós, F. Daniel, & J. Trujillo  (Eds.), Business Intelligence 

Applications and the Web: Models, Systems and Technologies (pp. 285-309). IGI Global.  

Ullman, J.D., & Zaniolo, C. (1990). Deductive databases: achievements and future directions. ACM 

SIGMOD Record, 19(4), 75-82.  

Wood, P.T. (2012). Query languages for graph databases. ACM SIGMOD Record, 41(1), 50-60.  

 



 11 

KEY TERMS & DEFINITIONS  

Arrow Notation is an approach to data access where fields are used to navigate through a 

structure. The main difference from dot notation is that arrow notation is a set-oriented approach and 

arrow operators are applied to and return sets of elements rather than individual elements. Another 

difference from dot notation is that arrow notation uses two opposite operators for navigating in both 

directions. In COQL, arrows denote projection and de-projection operators.  

Concept is a syntactic construct which is used to describe a data type and generalizes 

conventional classes. Concept is defined as a couple of one identity class and one entity class. Thus 

concepts can model both values (if entity class is empty) and objects (if identity class is empty).  

Concept-Oriented Query Language (COQL) is a syntactic embodiment of the concept-

oriented model (COM). It is a join-free query language which uses references and model 

multidimensional structure for connectivity. At the same time, it is a set-oriented approach because its 

operators manipulate sets of data elements rather than individual elements. It is also a semantic 

language because its constructs reflect and rely on basic semantic relationships existing in the model. 

Main operations of this query language are projection, de-projection and product (cube).  

De-projection is an operation applied to a set of elements and returning all their lesser 

elements in the partially ordered set. In terms of references, it returns a set of elements which 

reference the source elements along the specified dimension.  

Inclusion is relation between concepts which generalizes classical inheritance. One difference 

of inclusion from inheritance is that it describes a hierarchy of data elements where child elements 

share their parent element. Another difference is that it also models containment relation where child 

elements exist within their parent element.  

Inference is a procedure where constraints imposed on some source sets of elements are 

automatically propagated to some target set by returning related data elements as a result set. In 

COQL, inference operator is implemented as an access path consisting of two parts: de-projection part 

and projection part.  

Logical Navigation is an approach to querying where the result is specified via a path in the 

model structure which leads from source elements to the elements from the result set. In COQL, 

logical navigation is supported by projection and de-projection operations. A sequence of projection 

and de-projection operations is referred to as a logical access path.  

Projection is an operation applied to a set of elements and returning all their greater elements 

in the partially ordered set. In terms of references, it returns a set of elements which are referenced by 

the source elements along the specified dimension.  


