
Concept-Oriented Query Language

Alexandr Savinov, Technische Universität Dresden, Germany

INTRODUCTION

With the explosion of data volume and the variety of data sources (Cohen et al., 2009) – two aspects

of the big data problem - we observe quite significant difficulties in applying conventional data

analysis methodologies to real world problems. The existing technologies for data management and

analytics were pushed to the limits of their ability to solve more and more complex analysis tasks:

 Agile analytics. Perhaps the most widely used methodology for data analysis during several

decades is based on the multidimensional metaphor where data is viewed as existing in a

multidimensional space. A problem of this approach is that it is based on application-specific

scenarios with predefined roles of dimensions, measures, cubes and facts. Changing such

scenarios is a quite difficult task because they are embedded in both database systems and client

software. The goal of agile analytics consists in going beyond standard OLAP analysis by

facilitating exploratory ad-hoc analytics where the user can freely vary all data processing and

visualization parameters.

 Self-service analytics. The conventional approach to analysis is to approach IT department which

however has several drawbacks: business frequently does not trust data provided by IT, IT is

unable to understand the needs of the user (and this leads to frustration and low motivation), IT

might not be able to respond to user requests as quickly as is desirable (and the requirements may

well change during the response time), existing BI tools are not intended for non-professional

users. Self-service analytics is one of the most significant trends in the BI industry over the last

few years and these tools aim to give non-professional users the ability to solve analytical tasks

with little or no help from IT.

 Near real time analytics. It may take days to generate a BI report in a typical enterprise system

and there is strong demand in reducing the time between data acquisition and making a business

decision. One of the core problems is that traditional systems are based on two separate

technology stacks: for transactional workload and for analytical workload. The design principles

and techniques of these two subsystems are quite different and they cannot provide the necessary

response time and agility of decision making on large volumes of data (Chaudhuri, Dayal, &

Narasayya, 2011; Thiele & Lehner 2012). Although modern hardware provides a basis for a new

generation of in-memory, columnar databases (Boncz, 2012; Larson, 2013) with potentially higher

query performance on analytical workloads, it is important to understand that real time analytics is

not a hardware problem - new data models, new query languages, new analysis scenarios, new

analysis algorithms are needed.

 Semantic analysis. The conventional approach is that it is the task of the human analyst to

understand the meaning of data while the system has to only execute precise queries. However, a

typical enterprise system can contain tens of thousands data tables and open systems can involve

numerous external data sources. In this situation it is extremely difficult to get meaningful results

manually. Existing solutions add semantics via a separate layer which is based on quite different

data modeling and analysis techniques. This leads to complex mappings and translations at all

levels of the system architecture.

 Reasoning about data. The goal of this type of analysis is to answer questions by automatically

deriving them from the available data. This task has been a prerogative of the systems based on

formal logic which have several drawbacks: formal logic is not natural for expressing analysis

tasks, formal logic is not very suitable for numeric analysis, formal logic requires a separate

system because it is not directly compatible with available data storage, queries in formal logic are

computationally expensive.

 Analytical computations. Analysis is not limited by the operations of grouping and aggregation.

Now analysts need to embed arbitrary computations in their analysis tasks. Such tasks are

Encyclopedia of Business Analytics and Optimization, J. Wang (Editor), IGI-Global, 2014, 512-522.

 2

normally expressed as batch jobs where data is exported from one or many databases and then

processed using an analysis program. Executing arbitrary analysis tasks close to the data (ideally

directly where data resides) is still a big problem. It is actually a new incarnation of the old

problem of incompatibility between programming and data modeling (impedance mismatch)

because data is modeled and manipulated differently in programming languages and databases.

These fundamental challenges require a principled solution rather than yet another specific

technique. Many of the above problems can be solved at the level of a unified data model which

should be general enough to cover major analytical patterns of thought, and at the same time should it

be simple and natural. In this article we describe a novel query language, called the concept-oriented

query language (COQL), which addresses the above issues and is aimed at radically simplifying

typical data analysis and data modeling tasks. COQL is a syntactic description of the concept-oriented

model (COM) (Savinov, 2009, 2011) and it has the following distinguishing features:

 COQL replaces joins as a means of connectivity by a novel arrow notation which can be viewed

as a set-oriented analog of dot notation

 COQL replaces group-by operation by a novel operation of de-projection

 COQL introduces a novel mechanism of inference based on the multidimensional structure of data

instead of using logical inference

 COQL inherently supports dimensions as a basic construct rather than treating them as something

optional that is added for specific kinds of analysis

 COM and COQL support several data modeling and analysis paradigms (relational,

multidimensional, entity-relationship, semantic and conceptual, object-oriented) by resolving

many incompatibilities and controversies as well as increasing semantic integrity of data models

and analysis tasks

 COQL relies on a novel data typing construct, called concept, and two relations: inclusion and

partial order.

BACKGROUND

A language reflects main principles of the underlying model or paradigm using syntactic constructs

and rules. It is valid for programming languages, query language, conceptual languages and for other

areas where a theory can be described syntactically. Below we describe major language categories

used for data querying with the focus on data analysis, connectivity and set operations.

Join-based languages. It is probably the most wide spread class of query languages which rely

on the join operation as connectivity means. The most wide spread version of this class is SQL query

language developed within the relational model of data (Codd, 1970). Yet, it is important to

understand that join is a variant of a more general approach used in formal logic and consisting in

binding free variables. This method can be also characterized as “common value” approach: two

things are supposed to be related if they share some common value. It has numerous advantages but

probably the most important one in the context of data management is that join is an operation on sets.

It also has quite significant drawbacks (Savinov, 2012a): join is a low level and error-prone operation

which requires high expertise (Atzeni, 2013), joins can easily produce meaningless results because it

lacks semantics, join exposes the mechanics of connectivity at the level of business logic and is a

typical cross-cutting concern, join is not analytics-friendly.

Deductive query language. These languages are designed to be as close as possible to the

underlying formalism (normally first-order predicate logic) and their goal is to provide a full-featured

mechanism of inference. They were traditionally used in deductive databases (Ullman & Zaniolo,

1990) but currently an interest to these languages grows with the development of such technologies as

Semantic Web and Linked Open Data which are based on Description Logics. This approach has the

following drawbacks: it is not very intuitive and requires high expertise, it lacks structure because all

predicates and sets have the same level, it is not very suitable for multidimensional and numeric

analysis.

Graph-based languages. These languages (Wood, 2012) belong to the class of navigational

languages because their connectivity mechanism is based on the notion of path in some structure.

 3

These paths can be followed in different directions and used for retrieving graph nodes and edges. The

most common operations in graph databases is graph traversal which plays approximately the same

role as joins. These languages have always been very natural and very easy to use but they are not very

compatible with the dominating relational model, provide limited structuring mechanisms, have

limited semantics and not directly designed for numerical and multidimensional analysis.

Object-oriented query languages. The main focus of this approach (Dittrich, 1986; Atkinson

et al., 1990) is to support programming models and its development was driven by the need to

decrease or even eliminate the differences between data modeling and programming. Object-oriented

query languages rely on class descriptions and dot notation for navigation purposes. However they are

more instance-oriented and provide weaker support for set operations in comparison to other models.

In particular, very natural and convenient dot notation is not suitable for set operations.

Multidimensional query languages. Languages like MDX are used in the context of standard

OLAP models (Li & Wang, 1996; Pedersen & Jensen, 2001) for solving analytical tasks. This

approach is based on the notions of dimension, measure, facts and cube. It is intended for numerical

and multidimensional analysis but not directly compatible with other paradigms. Therefore, data

management is normally broken into two areas: managing transactional data (relational database) and

managing analytical data (data warehouse).

Other analytical query languages. There are several new empirical approaches to self-service

agile analytics implemented in software products. One of them is a novel Tabular data model and its

native query language, called Data Analysis eXpressions (DAX). These technologies are part of the

Business Intelligence Semantic Model (BISM) implemented in Microsoft SQL Server 2012 Analysis

Services (Russo, Ferrari, & Webb, 2012) and supported in some client products like PowerPivot. The

goal of this approach is to provide an analytical model for all user experiences by significantly

simplifying typical analysis tasks and facilitating self-service analytics. This technology eliminates the

need in and limitations of the conventional multidimensional models by providing an expression

language for arbitrary computations over available data. There exist also quite many empirical query

languages developed within NoSQL approach (Mohan, 2013). However, they are normally either too

specific implementations based on the features of the underlying database or adaptations of other

approaches.

CONCEPTS AND INCLUSION RELATION

Concepts

COM introduces a novel type modeling construct, called concept. Concept is defined as a couple of

two classes: one identity class and one entity class. The main difference between them is that instances

of an identity class are passed by-value and instances of an entity class are passed by-reference.

Passing an entity by-reference means that the coupled identity is copied instead of the entity. There are

two particular cases of concepts which produce traditional typing constructs:

 if entity class is empty then concept describes values (identity instances are values)

 if identity class is empty then it is equivalent to traditional classes instances of which are objects

represented by primitive references

For example, if colors are represented as values then they are described by a concept with the

empty identity class:

CONCEPT ColorValue //Instances are values

 IDENTITY

 INTEGER red, green, blue

 ENTITY // Empty

If colors have to be passed by-reference (in order to be shared among many other elements) then their

fields are described in the entity class:

 4

CONCEPT ColorObject //Instances are objects

 IDENTITY // Empty

 ENTITY

 INTEGER red, green, blue

In the general case, both constituents are not empty so that elements may have arbitrary

domain-specific identity and arbitrary entity structure. For example, existing data models do not allow

us to define colors as elements identified by name (passed by-value) and having three constituents

passed by-reference:

CONCEPT Color

 IDENTITY

 CHAR(10) name

 ENTITY

 INTEGER red, green, blue

Once a concept has been defined, it can be used as a type of variables, fields, parameters and

other (typed) elements. These elements will store a value in the format of the identity class and

provide access to the values stored in the entity. Concepts are also used to define sets of elements. A

set in COQL is written as some concept name in parentheses. For example, a set of colors is written as

(Color). A subset is specified by providing a constraint on its elements which is written as a logical

expression separated by bar symbol. For example, the following set contains only red colors: (Color

| green=0 && blue=0).

One of the most important benefits of the concept-oriented approach is that it generalizes and

simplifies the object-relational model by unifying domain modeling and relation modeling. In COM,

concepts define only one kind of sets where elements (concept instances) are identity-entity couples

while existing approaches use two different kinds of sets: domains consisting of values and relations

consisting of tuples. Note also that identities are different from the mechanism of (primary) keys.

Identities can be viewed as surrogates with arbitrary domain-specific structure while keys are entity

attributes with a special role. A concept can be thought of as a description of computer memory where

user-defined addresses are used to access user-defined cells. Concepts are also informally analogous to

complex numbers in mathematics which also have two constituents but are manipulated as one whole.

Inclusion

COM provides a novel relation, called inclusion, which is applied to concepts and is used instead of

the classical inheritance. Any concept (except for a root) is included in some other concept so that all

concepts exist in a hierarchy. A parent concept in the inclusion hierarchy is referred to as a super-

concept and child concepts are referred to as sub-concepts. Inclusion relation among concepts is

interpreted as IS-IN relation which means that many instances of a child concept are contained within

one instance of the parent concept.

Elements are still identified by their identities but now these identities extend parent identities

which in turn extend their parent identity and so on up to the root which represents the whole space of

elements. Inclusion in COM is similar to the hierarchical XML structure where parent elements

contain child elements directly by-value. A fully-specified identity of an element is a value which

consists of several segments starting from the root and ending with the identity of this element. Thus

inclusion relation allows us to model containment with hierarchical address space. For example, if

bank accounts are identified with respect to their bank (one bank has many accounts) then concept

Account has to be included in the Bank concept:

CONCEPT Account IN Bank // Exists in bank

 IDENTITY

 CHAR(10) accNo // Extends identity of Bank

 ENTITY

 DOUBLE balance

 5

If entity class is empty then inclusion is equivalent to value extension and can be used to

define more specific value types. If identity class is empty then inclusion is equivalent to classical

inheritance where additional fields can be added to an existing entity. When applied to relations,

inclusion provides a mechanism for their extension by defining more specific relations on the basis of

more general ones.

The use of concept inclusion significantly diminishes the differences between relational and

object-oriented modeling because concepts provide a common mechanism for modeling

simultaneously value domains and relation types. In the general case, both concepts and their instances

exist in a hierarchy where parents are shared parts of children (like in prototype-based programming).

For example, a bank has many accounts and an account might have many sub-accounts like savings

accounts. Thus COM inclusion eliminates the asymmetry between classes and instances so that a

concept hierarchy directly models instance hierarchies. Note also that IS-A relation in COM is a

particular case of IS-IN relation which means that to be included in some set means to inherit the

properties and behavior of this set (members of a set are more specific elements than the set they are

in).

DATA MANIPULATION AND ANALYSIS

Logical Navigation and Arrow Notation

COQL uses arrow notation (Savinov, 2012a) for navigating through the data structure and retrieving

sets of elements. Arrow notation can be viewed as a set-oriented analogue of the conventional dot

notation. If dot operation is applied to instances then arrow operations are applied to sets. Another

difference is that arrow notation provides two versions: for moving along attributes and for moving in

the opposite direction against attributes. Since all concepts and elements in COM are partially ordered,

this is interpreted as moving up or down in the partially ordered set of elements. Also, they are

interpreted as moving between layers of detail.

The operation of projection, denoted by right arrow, is applied to a set of elements and returns

a subset of elements which are referenced from the source elements by the specified attribute. For

example (Fig. 1), given a set of books we can find all their publishers by projecting them along the

publisher attribute:

(Book | date > '01.01.2005')

 -> publisher -> (Publisher)

Figure 1. Projection and de-projection.

De-projection is the opposite operation denoted by left arrow. It returns a set of elements from

the target set which reference the elements of the source set. For example (Fig. 1), given a set of

publishers we can de-project them and find all the books they published:

(Publisher | name = 'XYZ')

 <- publisher <- (Book)

These operations serve for logical navigation in COQL (Savinov, 2006a). The general idea is

that constraints are imposed in some part of the schema and then propagated to another part of the

schema using a zig-zag attribute path composed of projections and de-projections. For example

(Fig. 2), we could easily find all writers of a publisher by applying two de-projections followed by

projection:

Books

Publishers

publisher

(Books)

 -> publisher

 -> (Publishers)

(Publishers)

 <- publisher

 <- (Books)

 6

(Publisher | name = 'XYZ')

 <- publisher <- (Book)

 <- book <- (BookWriter)

 -> writer -> (Writer)

Figure 2. Logical navigation.

Taking into account semantic interpretations of partial order in COM, projection means

getting all coordinates of the source points, finding all more general elements than the source

elements, and all containers for the source elements. De-projection is interpreted as getting all points

having the source coordinates, finding all more specific elements for the source elements, and all

members of the source containers.

One of the main benefits of these two operations is that they eliminate the need in join and

group-by operations. Joins are not needed because sets are connected using multidimensional

hierarchical structure of the model. Group-by is not needed because any element is interpreted as a

group consisting of its lesser elements. Given an element (group) we can get its members by applying

de-projection operation. For example, if it is necessary to select only publishers with more than 10

books then it can be done it as follows:

(Publishers |

 COUNT(publisher <- (Books)) > 10)

Here de-projection publisher <- (Books) returns a group of books of this publisher and then

their count is compared with 10.

Constraint Propagation and Inference

An important application of projection and de-projection operations consists in propagating arbitrary

constraints through the model structure. Constraints are specified as a source set of elements. The

propagation path is specified as a sequence of attributes and intermediate sets leading to the target set

the elements of which have to be retrieved. In many cases intermediate attributes and sets can be

omitted and then the system will reconstruct the propagation path. Such projection and de-projection

with an undefined dimension path is denoted by '*->' and '<-*' (with star symbol interpreted as

any dimension path). For example (Fig. 3), given a collection of Books we can find all related

Addresses using the following projection query:

(Books | price < 10) *-> (Addresses)

This query is translated into the following query where the propagation path is written explicitly:

(Books | price < 10)

 -> publisher -> (Publishers)

 -> address -> (Addresses)

Books Writers

Publishers

book

WriterBook

writer

(Publishers)

 <- publisher

 <- (Books)
publisher

(Books)

 <- book

 <- (WriterBook)

(WriterBook)

 -> write

 -> (Writers)

 7

Figure 3. Constraint propagation.

This query can be reversed and then it will return all Books related to the selected Addresses:

(Addresses | country == 'DE') <-* (Books)

The above queries are examples of propagating constraints in only one direction and they are

restricted versions of inference. In the general case, source and target sets may have arbitrary locations

in the schema and then this approach does not work because they are not connected by a projection or

de-projection path. To solve this problem of propagating constraints between arbitrary sets, COQL

propose a special solution which is based on inference operator denoted as '<-*->' (de-projection

step followed by projection step via an arbitrary dimension path). It connects two sets from the

database and finds elements of the second set which are related to the first one. This approach assumes

that source and target sets have some common lesser set which is treated as a relationship between

them (or a fact set in OLAP terms). Constraints imposed on the source set are de-projected down to

this lesser set by selecting a subset of its elements. And then the selected elements are projected up to

the target set.

For example (Fig. 4), given a set of young writers we can easily find related countries by

using only one operator:

(Writers | age < 30)

 <-*-> (Addresses) -> countries

Figure 4. Inference.

To answer this query, the system first chooses a common lesser collection, WriterBooks in this

example, and then transforms this query to two operations of de-projection and projection:

(Writers | age < 30)

 <-* (WriterBooks) // De-project

 *-> (Addresses) -> countries // Project

After that, the system reconstructs the complete constraint propagation path:

Books Writers

Publishers

book

WriterBook

writer

Addresses

publisher

address

(Books) *-> (Addresses)

Books Writers

Publishers

book

WriterBook

writer

Addresses

publisher

address

(Writers | age < 30)

 <-*-> (Addresses)

 -> countries

 8

(Writers | age < 30)

 <- writer <- (WriterBooks)

 -> book -> (Books)

 -> publisher -> (Publishers)

 -> address -> (Addresses) -> countries

If there are no common lesser sets or there are more than one such set then it is possible to

provide more information in the query that the system can use for inference as described in (Savinov,

2006b, 2012b).

Product Operation for Multidimensional Analysis

Navigational operations of projection and de-projection are intended for retrieving data that already

exists in the database. However, in many cases it is necessary to generate new data elements. This task

is supported by the product operation which returns all combinations of elements from source sets

specified as parameters. In COQL, product is written as a number of sets enclosed in parentheses and

optionally prefixed by the CUBE or PRODUCT keyword. For example (Fig. 5), given two source

collections with countries and product categories we can produce a 2-dimensional set where every

element is a combination of one country and one produce category:

ResultCube =

 CUBE (Countries, Categories)

Figure 5. Multidimensional analysis.

The main application of the product operation is multidimensional analysis where the task is

to group facts over cells of the cube and then compute some numeric aggregated characteristic

(measure) for this group (Savinov, 2005). Grouping is performed by de-projecting a cell down to the

facts. This group is then passed to an aggregation parameter and all these operations are performed for

each element of the cube in the BODY block. For example, sales over countries and categories can be

computed using the following query:

 CUBE(Countries co, Categories ca)

 BODY {

 cell = co <-* Sales AND

 ca <-* Sales

 measure = SUM(cell.amount)

 }

 RETURN co.name, ca.name, measure

The group of sale facts belonging to one cell (one country and one category) is computed by

de-projecting the current country and category down to the Sales fact collection and then finding

their intersection (denoted by AND). Then all sales are summed up within one cell of the cube using

only one numeric dimension for aggregation. Finally, the value computed for this country and this

category is returned in the result.

Product Order

Country

category

product

country

Sales

order

Category

Fact collection

Level
concept

Level
concept

CUBE

 9

FUTURE RESEARCH DIRECTIONS

Currently there is strong demand in more expressive query languages providing not only some built-in

analytical operators but rather inherently supporting analytics as their primary goal. COQL follows

this long term goal by trying to revisit how analytics is done and by radically simplifying typical

analytical and other data management tasks. Such a next generation query language should be much

closer to traditional programming languages which allow for implementing arbitrary business logic

and arbitrary data manipulations. Such a unification of programming and query languages could be

done on the basis of concept-oriented programming (Savinov, 2012c) which is also based on the same

principles as COQL.

Another direction for future research consists in using COQL for conceptual modeling. Here

the challenge is to eliminate differences between logical and conceptual levels of modeling. COQL

already provides significant support for modeling relationships and in future more mechanisms and

patterns for conceptual modeling should be integrated into it. Representing data semantics as well as

reasoning about data are also considered important directions for future research.

CONCLUSION

The concept-oriented model and query language is a step towards developing a unified approach to

data management and analytics which provides equal support for transactional, analytical and

conceptual views on data as well as addresses other issues: agile and self-service analytics, semantics

and reasoning, near-real-time analytics and analytical computations close to the data. COM and COQL

take a holistic view on data by unifying a wide range of existing data modeling approaches and

reducing them to only three major principles: duality, inclusion and partial order. COQL is a rather

simple and natural language in comparison to existing query languages but on the other hand it is a

rather powerful language which introduces several significant changes to the way data is represented,

queries and analyzed:

 COQL removes such predefined roles as dimension, measure, fact, and cube from the model. At

the same time, these roles can still be assigned to elements depending on the necessary result. The

benefit is that the model remains inherently multidimensional and analytical but without

constraints imposed by the OLAP approach to analysis.

 COQL introduces arrow notation as the main connectivity mechanism replacing joins. The benefit

is that the details of connections are effectively hidden by retaining the set-orientation of joins and

simplicity of dot notation.

 COQL relies on partial order relation for representing da semantics. This makes the whole

approach very natural because the data modeling constructs directly correspond to the real things

and business notions they represent. It also makes this approach very general because partial order

can represent many existing semantic constructs and models: entity-relationship modeling,

multidimensional modeling, levels of detail, object-oriented modeling and inheritance,

containment relation. The main benefit is that this significantly simplifies data management and

analytics by eliminating or reducing many incompatibilities which stem from a large number of

diverse data modeling techniques and patterns.

 COQL provides inference capabilities as an inherent part of the query languages without adding

new constructs but rather relying only on the multidimensional setting and semantic interpretation

of the partial order relation. The benefit is that it allow for not only doing complex numeric

analysis but also performing tasks which have always been a prerogative of logic-based models.

REFERENCES

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., & Zdonik, S. (1989). The object-

oriented database system manifesto. In Proc. 1st Int. Conf. on Deductive and Object-Oriented

Databases (pp. 223-240).

Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L., & Torlone, R. (2013). The relational model is

dead, SQL is dead, and I don’t feel so good myself. ACM SIGMOD Record, 42(2), 64-68.

 10

Boncz, P. (Ed.) (2012). Column store systems [Special issue]. IEEE Data Eng. Bull., 35(1).

Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of Business Intelligence technology.

Communications of the ACM, 54(8), 88-98.

Codd, E.F. (1970). A relational model of data for large shared data banks. Communications of the

ACM, 13(6), 377-387.

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., & Welton, C. (2009). Mad skills: New analysis

practices for big data. In Proc. 35th International Conference on Very Large Data Bases (VLDB 2009)

(pp. 1481-1492).

Dittrich, K.R. (1986). Object-oriented database systems: The notions and the issues. In Proc. Intl.

Workshop on Object-Oriented Database Systems (pp. 2-4).

Larson, P. (Ed.) (2013). Main-memory database systems [Special issue]. IEEE Data Eng. Bull., 36(2).

Li, C., & Wang, X.S. (1996). A data model for supporting on-line analytical processing. In Proc.

Conference on Information and Knowledge Management (pp. 81-88). Baltimore, MD.

Mohan, C. (2013). History repeats itself: Sensible and NonsenSQL aspects of the NoSQL hoopla. In

Proc. EDBT 2013 (pp. 11-16).

Pedersen, T.B., & Jensen, C.S. (2001). Multidimensional database technology. IEEE Computers,

34(12), 40-46.

Russo, M., Ferrari, A., & Webb, C. (2012). Microsoft SQL Server 2012 Analysis Services: The BISM

Tabular Model. Microsoft Press.

Savinov, A. (2012a). References and arrow notation instead of join operation in query languages.

Computer Science Journal of Moldova (CSJM), 20(3), 313-333.

Savinov, A. (2012b). Inference in hierarchical multidimensional space. In Proc. International

Conference on Data Technologies and Applications (DATA 2012) (pp. 70-76).

Savinov, A. (2012c). Concept-oriented programming: Classes and inheritance revisited. In Proc. 7th

International Conference on Software Paradigm Trends (ICSOFT 2012) (pp. 381-387).

Savinov, A. (2011). Concept-oriented query language for data modeling and analysis. In L. Yan & Z.

Ma (Eds), Advanced database query systems: Techniques, applications and technologies (pp. 85-101).

IGI Global.

Savinov, A. (2009). Concept-oriented model. In V.E. Ferraggine, J.H. Doorn, & L.C. Rivero (Eds.),

Handbook of research on innovations in database technologies and applications: Current and future

trends (2nd ed., pp. 171-180). IGI Global.

Savinov, A. (2006a). Query by constraint propagation in the concept-oriented data model. Computer

Science Journal of Moldova (CSJM), 14(2), 219-238.

Savinov, A. (2006b). Grouping and aggregation in the concept-oriented data model. ACM Symposium

on Applied Computing (SAC 2006) (pp. 482-486).

Savinov, A. (2005). Hierarchical multidimensional modelling in the concept-oriented data model.

Proc. 3rd international conference on Concept Lattices and Their Applications (CLA’05) (pp. 123-

134).

Thiele, M., & Lehner, W. (2012). Real-TimeBIand Situational Analysis. In M.E. Zorrilla, J.-

N. Mazón, Ó. Ferrández, I. Garrigós, F. Daniel, & J. Trujillo (Eds.), Business Intelligence

Applications and the Web: Models, Systems and Technologies (pp. 285-309). IGI Global.

Ullman, J.D., & Zaniolo, C. (1990). Deductive databases: achievements and future directions. ACM

SIGMOD Record, 19(4), 75-82.

Wood, P.T. (2012). Query languages for graph databases. ACM SIGMOD Record, 41(1), 50-60.

 11

KEY TERMS & DEFINITIONS

Arrow Notation is an approach to data access where fields are used to navigate through a

structure. The main difference from dot notation is that arrow notation is a set-oriented approach and

arrow operators are applied to and return sets of elements rather than individual elements. Another

difference from dot notation is that arrow notation uses two opposite operators for navigating in both

directions. In COQL, arrows denote projection and de-projection operators.

Concept is a syntactic construct which is used to describe a data type and generalizes

conventional classes. Concept is defined as a couple of one identity class and one entity class. Thus

concepts can model both values (if entity class is empty) and objects (if identity class is empty).

Concept-Oriented Query Language (COQL) is a syntactic embodiment of the concept-

oriented model (COM). It is a join-free query language which uses references and model

multidimensional structure for connectivity. At the same time, it is a set-oriented approach because its

operators manipulate sets of data elements rather than individual elements. It is also a semantic

language because its constructs reflect and rely on basic semantic relationships existing in the model.

Main operations of this query language are projection, de-projection and product (cube).

De-projection is an operation applied to a set of elements and returning all their lesser

elements in the partially ordered set. In terms of references, it returns a set of elements which

reference the source elements along the specified dimension.

Inclusion is relation between concepts which generalizes classical inheritance. One difference

of inclusion from inheritance is that it describes a hierarchy of data elements where child elements

share their parent element. Another difference is that it also models containment relation where child

elements exist within their parent element.

Inference is a procedure where constraints imposed on some source sets of elements are

automatically propagated to some target set by returning related data elements as a result set. In

COQL, inference operator is implemented as an access path consisting of two parts: de-projection part

and projection part.

Logical Navigation is an approach to querying where the result is specified via a path in the

model structure which leads from source elements to the elements from the result set. In COQL,

logical navigation is supported by projection and de-projection operations. A sequence of projection

and de-projection operations is referred to as a logical access path.

Projection is an operation applied to a set of elements and returning all their greater elements

in the partially ordered set. In terms of references, it returns a set of elements which are referenced by

the source elements along the specified dimension.

