
CONCEPT-ORIENTED PROGRAMMING:
CLASSES AND INHERITANCE REVISITED

Alexandr Savinov
Hauptstr. 25, 01097 Dresden, Germany

savinov@conceptoriented.org

Keywords: Programming paradigms, classes, inheritance, polymorphism, cross-cutting concerns

Abstract: The main goal of concept-oriented programming (COP) is describing how objects are represented and

accessed. References (object locations) in COP are made first-class elements responsible for many

important functions which are difficult to model via objects. COP rethinks and generalizes such primary

notions of object-orientation as class and inheritance by introducing a novel construct, concept, and a new

relation, inclusion. They make it possible to describe many mechanisms and patterns of thoughts currently

belonging to different programming paradigms: modeling object hierarchies (prototype-based

programming), precedence of parent methods over child methods (inner methods in Beta), modularizing

cross-cutting concerns (aspect-oriented programming), value-orientation (functional programming).

1 INTRODUCTION

Object orientation is one of the most influential and
successful paradigms in computer science. Objects
have always been in the center of this methodology
(hence its name) according to which it is object’s
functionality that accounts for most of the program
complexity. Yet object-oriented programming
(OOP) has one general drawback: it does not
provide a means for describing how objects are
represented and how they are accessed. Any object
is guaranteed to get some kind of primitive reference
and a built-in access procedure without a possibility
to change them. Thus there is a strong asymmetry
between the role of objects and references: objects
are intended to implement domain-specific structure
and behavior while references have a primitive form
and are not modeled by the programmer.
Programming means describing objects rather than
references. This abstraction from reference
mechanics is achieved by completely removing
references and object access procedures from the
scope of programming, and delegating these
functions to the translator. In OOP, we are not able
to model how objects exist, where they exist, and
how they are accessed.

Concept-oriented programming (COP), first
described in (Savinov, 2005), is a novel approach to
programming the main general goal of which is to
answer these questions by legalizing references and

making them first-class elements of programming
languages. In this sense, COP can be characterized
as reference-oriented programming or programming
focusing on what happens during access. COP
assumes that references account for a great deal of
the program complexity and their functions are at
least as important as those of objects. To describe
both references and objects, COP introduces a novel
construct, called concept (hence the name of this
approach). The main goal of concepts is to retain
main functions of conventional classes by providing
a possibility to model how objects are represented
and accessed.

Classical inheritance cannot be easily adopted
for concepts, particularly, because concept instances
exist in a hierarchy (like in prototype-based
programming). Therefore COP introduces a new
relation, called inclusion. Its main purpose consists
in modeling hierarchical address spaces by
describing references consisting of several segments.
As a result, objects in COP exist in a hierarchal
space where each of them has a unique address with
custom structure (like postal addresses). Defining
program elements as consisting of two parts
(reference and object) and existing in a hierarchical
address space leads to rethinking and generalizing
such fundamental notions as object identification,
inheritance and polymorphism.

First version of concept-oriented programming,
COP-I, is described in (Savinov, 2005). The next

7th International Conference on Software Paradigm Trends (ICSOFT 2012), Rome, Italy, 24-27 July, 381-387, 2012.

Related papers: http://conceptoriented.org/

http://conceptoriented.org/

version, COP-II (Savinov, 2008; Savinov, 2009),
changes the interpretation of concepts and adds
several new mechanisms. This paper describes a
new major revision of concept-oriented
programming, denoted as COP-III. Its main goal is
to describe this programming model by using fewer
general notions and more natural interpretations by
simultaneously covering more programming patterns
existing in other approaches.

The first major change in COP-III is that
concepts are defined differently: instead of using
two symmetric constituents – object class and
reference class – we use only one component which
models references. Instead of modeling objects
explicitly via object classes, we propose a new
general treatment of objects: object is a function of
its reference.

Another important change is the use of two
keywords for navigating through the hierarchy,
super and sub (as opposed to using only super in
OOP), and the existence of two opposite overriding
strategies. In addition, COP-III introduces incoming
and outgoing methods instead of using reference
methods and object methods in previous versions.
Incoming methods of concepts intercept requests
from outside and outgoing methods intercept
requests from inside. We also remove the
continuation method and reference resolution
mechanism from the programming model. Instead,
access indirection relies on the ability of elements to
intercept incoming and outgoing methods.

The paper has the following layout. Section 2
defines the notion of concept. Section 3 is devoted to
describing inclusion relation. Section 4 describes
how inheritance, polymorphism and cross-cutting
concerns are implemented in COP-III using concepts
and inclusion. Section 5 makes concluding remarks.

2 CONCEPTS INSTEAD OF

CLASSES

Concepts and values. Concepts in COP-III describe
values. In this sense, concepts are analogous to
classes in C++ except that concepts do not have a
possibility to get an address or reference for their
instances. Like all values, concept instances are
passed by-copy only and do not have any permanent
location, address, pointer, reference or any other
indirect representation. For example, the following
concept describes a bank account:

concept Account {
 char[10] accNo;
 Person owner;
}

The first field will contain 10 characters while the
second field will contain a value with the structure
defined by the Person concept.

Dual methods. What makes concepts different
from classes is the presence of two kinds of
methods: incoming methods (marked by the
modifier ‘in’) and outgoing methods (marked by the
modifier ‘out’). Such a pair of incoming and
outgoing methods with the same signature is referred
to as dual methods. For example, if we would like to
have a method for getting the current account
balance then formally this functionality can be
specified in the incoming and outgoing methods:

concept Account
 char[10] accNo;
 in double getBalance() {...};
 out double getBalance() {...};
}

It is not necessary to define both versions: if one of
them is absent then it is supposed to have a default
implementation. Dual methods are invoked as usual
using only their name without any indication if it is
an incoming or outgoing version. The main purpose
of dual methods is performing different functions for
different directions of access. If concepts are thought
of as borders then dual methods are responsible for
processing incoming and outgoing requests. In other
words, a request originating from inside is processed
by an outgoing method and a request originating
from outside is processed by an incoming method.
Scopes and directions of access are described in
Section 3.

References and objects. One of the most
important assumptions in COP is that references are
values and hence modeling the structure of
references is equivalent to modeling that of values.
More specifically, references are values interpreted
as locations or addresses of objects. References not
only identify objects but also provide access to other
values which are thought of as being stored in the
object fields. Thus object fields can be defined as
functions of references which return the same output
value for the same input reference (but this
association may change by using setters). An object
is defined as a couple of two tuples: the first tuple,
called reference or identity, is a number of values

 nvvs ,,1  , and the second tuple, called object
or entity, is a number of values returned by functions
defined on the reference (first tuple),

)(,),(1 sfsf m . Thus an object is identified by its

reference (which is some value) and has as many
fields as it has functions in the entity. Importantly,
only the identity part of an element is really
transferred while the entity part is what the functions
return. Therefore we say that values are accessed
directly while objects are accessed indirectly. Note
also that this definition makes references more
important than objects because the identity part
(reference) must always exist. (Reference can be
empty if it is inherited from the parent as described
later in this section.) If the entity part is empty then
it is a value, that is, values are a particular case of
objects without associated functions (an address or
location without any other values stored at it).

Object fields as outgoing methods. Since
references are values and concepts are used to model
values, we can use concepts to model references.
Concept fields specify the structure of references
and concept methods specify functions returning
other values interpreted as being stored in this
object. In addition, we assume that object fields are
implemented by outgoing methods of concepts which
return the same result for the same reference
(concept instance). Syntactically, we will define
such methods as setters and/or getters. For example,
bank accounts are uniquely identified by their
numbers which is used as a reference. In addition,
any bank account is supposed to have some balance
which however should be stored in an object field.
Such a field is defined using an outgoing method
which returns balance depending on the account
number.

concept Account {
 char[10] accNo;
 out double balance {
 get { return func(accNo); }
 }
}

Here we effectively defined a new object field,
called balance, which can be used as usual:

Account acc = getAccount("Smith");
double currentBalance = acc.balance;

If there is no need in having custom references
and object allocation mechanism then they can be
inherited from some kind of primitive reference
provided by the run-time environment as described
in the next section.

3 INCLUSION INSTEAD OF

INHERITANCE

Extending values and references. COP provides a
possibility to extend an already existing concept by
adding new fields and methods using an inclusion
relation denoted by the keyword ‘in’. Inclusion
generalizes conventional inheritance and
containment relations as well as has several new
properties discussed in Section 4. If concept B is
included in concept A then A is referred to as a
super-concept and B is referred to as a sub-concept.
Instances of B will extend instances of A, that is, an
instance of B is a value with additional fields
attached to an instance of A. What is new in
inclusion is that it can be used to describe
hierarchical address spaces similar to postal
addresses or computer names. Here we use an
important conceptual assumption: if reference is a
value then an extended value is a relative (local)
reference. Super-concepts describe spaces for their
sub-concepts while concept fields define the
structure of local addresses relative to the parent
address space. A child instance (extension) is said to
exist in the domain (also context or scope) of its
parent instance. For example, bank accounts are
always identified with respect to their bank. Such a
hierarchical address space is described by two
concepts:

concept Bank
 char[12] bankCode;
}

concept Account in Bank {
 char[10] accNo;
}

Any reference to an account will consist of two
segments: a parent bank reference and a child
account reference.

Primitive references and objects. If there is no
need in having custom references and object
allocation mechanism then they can be inherited
from some kind of primitive reference provided by
the run-time environment like global/local heap,
remote references or persistent storage. For that
purpose, the concept has to be included in the
platform-specific concept. For example, if we are
going to allocate our objects in memory then the
standard memory manager is used as a super-
concept:

concept Bank in MemoryHandle
 char[12] bankCode;
}

Now instances of the Bank concept (and all its sub-
concepts like Account) will extend memory handles
provided by the platform. By default (but not
always), each new bank and account objects will get
a separate memory handle. In particular, each
variable of the Account concept

Account acc; // 3 segments

will consist of three segments: memory handle, bank
code and account number. The compiler will
automatically allocate memory handles and memory
necessary to store all object fields.

Navigating inclusion hierarchy. Any concept
breaks the whole space into two domains: internal
and external. Internal domain consists of all its sub-
concepts while external domain consists of all other
concepts. If concept is thought of as a border then it
can be crossed in two directions: from outside in the
direction of internal domain and from inside in the
direction of external domain. Each border crossing is
intercepted by some concept method depending on
the direction of access: if an element is accessed
from inside then its outgoing method is used, and if
it is accessed from inside then its incoming method
is used. This can be viewed as a visibility rule where
outgoing methods are visible from inside and
incoming methods are visible from outside. It is
analogous to the passport control system at airports
where arriving and departing passengers pass
through different gates with different procedures.
Essentially, concepts provide two implementations
for each method: one for external use and one for
internal use. However, once two versions of a
method have been defined, we can forget about their
differences and use concept methods precisely as
methods of conventional classes.

COP uses super and sub keywords to access
super- and sub-elements, respectively. sub is
analogous to inner in the Beta programming
language (Goldberg et al., 2004) where clear and
convincing justification for their need is also
provided. Applying a method to the sub keyword
will produce an incoming method call because we
are trying to enter a domain. Applying a method to
the super keyword will call an outgoing method of
the parent concept because it is a call from inside.
Thus super method calls are always outgoing
methods and sub method calls are always incoming
methods. For example, if a method of the Bank
concept is called from any method of the Account
concept then an outgoing version of this method will
be executed:

concept Account in Bank
 out double getInterest() {
 double rate = super.getInterest();
 return rate + accRate;
 }
}

Here super.getInterest() is an outgoing method
of the Bank concept which returns the current
interest rate at this bank (the same for all accounts of
this bank). An incoming version of this method
might produce different interest rate for external
calls (or might not be defined at all). The
getInterest method of the Account concept can
be called from its sub-concepts only because it is
marked as an outgoing method.

Object hierarchy. One of the distinguishing
features of COP is its support of object hierarchies
where one object may have many child objects with
different relative references. Outgoing methods
produce their result depending on this instance value
and the parent segment values. In the case of the
same parent, outgoing methods of different children
will produce different results which are interpreted
as different object field values. For example, assume
that one bank object has many account objects with
the persistent state stored in some database. Account
balance could be then defined as follows:

concept Account in Bank {
 char[10] accNo;
 out double balance {
 get {
 Connection db = super.getConn();
 return db.load("balance", accNo);
 }
 set {
 Connection db = super.getConn();
 db.save("balance", accNo, value);
 }
 }
}

Here each Account object is identified by its
number and then its balance object field is defined
as an outgoing method (via one setter and one
getter). Account balance depends on the current
bank which provides connection to the database (so
different banks store their data in different
databases). As an extension, it also depends on the
current account number which is used as a primary
key when getting values from the database.
Importantly, these are only implementation details
but logically all objects exist in a hierarchy where
each bank has many accounts. We can read balances
and update balances using account references
(consisting of several segments). And these
operations will be logically correct because their
result depends only on references. It is analogous to

object hierarchies in prototype-based programming
(Borning, 1986; LaLonde et al., 1986; Lieberman,
1986) with the difference that COP is also a class-
based approach where both classes and their
instances exist in a hierarchy.

4 USES OF THE INCLUSION

HIERARCHY

Inheritance. Inheritance is a language mechanism
for defining new objects by reusing already existing
object definitions. The most wide spread treatment
of inheritance is that members of a new class are
added to or extend those already defined in the base
class being reused. This model of inheritance is
directly supported by outgoing concept methods.
More specifically, child outgoing methods are
implemented using parent outgoing methods which
are called via the super keyword. COP also
supports the model of inheritance implemented in
prototype-based languages where the behavior
defined in a parent object (prototype) is shared
among and reused by all child objects (Stein, 1987).

Inheriting concept fields also works precisely as
in the classical case: child fields are simply added to
the parent concept fields. In this way we can extend
values by adding more fields to them. For example,
if concept Point has two fields x and y then we
can define a new concept Point3D which has an
additional field z:

concept Point { int x; int y; }
concept Point3D in Point { int z; }

Extending objects is not so simple because
parent objects are shared among their children and
therefore child fields cannot be simply concatenated
with the parent fields. The classical model for object
extension can be obtained if the child concept has no
fields. Since the reference is empty, only one child
can exist within one parent (just because they cannot
be distinguished). In this case, we can think of child
object fields as simply extending the parent fields.
For example, if we need to define a bank account
with some additional property then it can be done as
follows:

concept BonusAccount in Account {
 out double bonus; // Object field
}

It is equivalent to conventional class and class
inheritance. Any instance of this class will get its
own parent segment with an additional bonus field
defined in this concept.

Polymorphism. Polymorphism allows an object
of a more specific type to be manipulated
generically as if it were of a base type. For example,
if we declare a variable as having the type Account
then polymorphism allows us to apply to it the
method getBalance even though it stores a
reference to a more specific type like
BonusAccount. There exist different approaches
to implementing polymorphic behavior but the
currently dominating strategy consists in completely
overriding parent methods by child methods. In
other words, if we define a child method then it will
have precedence over the parent methods. If the
child still needs some parent functionality then it has
to explicitly use it by means of a super call. For
example, if the Button class has to provide a more
specific implementation of the draw method (than its
parent Panel class) then it is implemented as
follows:

class Panel {
 void draw() {
 fillBackground();
 }
}

class Button extends Panel {
 void draw() {
 super.fillBackground ();
 drawButtonText("MyButton");
 }
}

In addition to this classical direct overriding
strategy for implementing polymorphism, COP
introduces a reverse overriding strategy by
assuming that parent incoming methods have
precedence over and then can call child incoming
methods. Thus incoming methods of parent concepts
override incoming methods of child concepts. In the
above example, panel background is filled by the
parent class and then the child method is called in
order to add (inject) more specific behavior:

concept Panel {
 in void draw() {
 fillBackground();
 sub.draw();
 }
}

concept Button in Panel {
 in void draw() {
 drawButtonText("MyButton");
 }
}

Note that here we inject some more specific
behavior from within the parent incoming methods
instead of injecting more general (parent) behavior
from within the child (direct overriding). It is
analogous to the idea of treating sub-classes as

behavioral extensions to their super-classes in the
Beta programming language (Kristensen et al., 1987;
Madsen & Møller-Pedersen, 1989) where super-
classes provide generic behavior which extended
using the keyword inner rather than overridden.
Both strategies describe behavior incrementally by
executing some operations and then sending a
request for further processing either to the parent or
child object so the difference between them is only
in the direction of delegation which is also similar to
the mechanism of capturing and bubbling in
JavaScript. What is new in COP is that these two
strategies are combined using the mechanism of dual
methods which effectively isolates two directions for
method call propagation.

Cross-cutting concerns. Complex programs
have functions which are scattered throughout the
whole source code. Such program logic that spans
the whole program is referred to as a cross-cutting
concern and is known to produce numerous
problems in software development. Aspect-oriented
programming (AOP) (Kiczales, 1997) is the most
wide spread approach to modularizing cross-cutting
concerns which introduces an additional
programming construct, called aspect. Aspects are
orthogonal to the class hierarchy so that behavior
defined in aspects is injected into points defined in
the class hierarchy. In this sense, aspects and classes
play different roles; they are not completely unified
as well as not completely independent.

COP proposes a novel solution for this problem
which is based on the ability of parent methods to
intercept any access to child methods. Thus cross-
cutting concerns are modularized in parent incoming
methods and this functionality is injected in child
methods. Effectively, this mechanism allows using
parent incoming methods as wrappers for child
methods so that some functions are guaranteed to be
executed for each access while target (child) objects
are unaware of this intervention. In terms of spaces,
cross-cutting concerns are thought of as functions
associated with space borders and automatically
triggered for each incoming request passing the
border. For example, if we would like to log any
access from outside to account balances then this
cross-cutting concern is implemented in the
getBalance incoming method:

concept Bank {
 in double getBalance() {
 logger.Debug("Balance accessed.");
 return sub.getBalance();
 }
}

Interestingly, the notion of cross-cutting concern
can be also applied to outgoing methods which
means that one and the same logic is executed for all
outgoing requests. For example, if banks have some
reserves and they want to log all accesses to this
property from inside then it is implemented as an
outgoing method:

concept Bank {
 protected out double reserves;
 out double getReserves() {
 logger.Debug("Reserves accessed.");
 return this.reserves;
 }
}

Now any access to the bank reserves from any child
object (like Account methods) will be logged.
Obviously, this pattern is easily implemented in
OOP. We mention it in order to emphasize that
cross-cutting behavior has dual nature which is
modularized in incoming and outgoing methods.

5 CONCLUSION

In this paper we described a novel approach to
programming, called concept-oriented programming,
which revisits some classical notions like class,
inheritance, referencing, polymorphism, cross-
cutting concerns. COP can be viewed as a
generalization and further development of OOP by
retaining its main features and adding the following
new mechanisms:
 Modeling values and references by concepts
 Treating objects as functions of references
 Dual methods: incoming and outgoing
 Modeling object fields by outgoing methods
 Extended reference means relative (local)

address
 Modeling hierarchical address space by inclusion

relation and navigating via super and sub calls
 Inclusion generalizes inheritance and

containment
 Two override strategies: reverse implemented by

incoming methods and direct implemented by
outgoing methods

 Modularize cross-cutting concerns in incoming
methods which inject behavior in all child
objects

 Integration with a new unified data model
(Savinov, 2011; Savinov 2012)

Taking these properties into account, COP can be
used as a basis for a next generation unified
programming model.

REFERENCES

Borning, A.H., 1986. Classes versus prototypes in object-
oriented languages. In Proc. ACM/IEEE Fall Joint
Computer Conference, 36–40

Goldberg, D.S., Findler, R.B., Flatt, M., 2004. Super and

inner: together at last! In Proc. OOPSLA’04, 116–129
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C., Loingtier, J.-M., Irwin, J., 1997. Aspect-
Oriented Programming, In Proc. ECOOP’97, 220–242

Kristensen, B.B., Madsen, O.L., Moller-Pedersen, B.,
Nygaard, K., 1987. The Beta programming language,
In Research Directions in Object-Oriented
Programming, B. Shriver, P. Wegner (Eds.), 7–48

LaLonde, W.R., Thomas, D.A., Pugh, J.R., 1986. An
exemplar based Smalltalk. In Proc. OOPSLA’86, 322–
330

Lieberman, H., 1986. Using prototypical objects to
implement shared behavior in object-oriented systems.
In Proc. OOPSLA’86, 214–223

Madsen, O.L., Møller-Pedersen, B., 1989. Virtual Classes:
A Powerful Mechanism in Object-Oriented

Programming. In Proc. OOPSLA’89, 397–406
Savinov, A., 2005. Concept as a Generalization of Class

and Principles of the Concept-Oriented Programming.
Computer Science Journal of Moldova, 13(3), 292–
335

Savinov, A., 2008. Concepts and Concept-Oriented
Programming. Journal of Object Technology 7(3), 91–
106

Savinov, A., 2009. Concept-Oriented Programming.
Encyclopedia of Information Science and Technology,
2nd Edition, Editor: Mehdi Khosrow-Pour, IGI
Global, 672–680

Savinov A. (2011) Concept-Oriented Model: Extending
Objects with Identity, Hierarchies and Semantics,
Computer Science Journal of Moldova, 19(3), 254–
287.

Savinov A. (2012) Concept-Oriented Model: Classes,

Hierarchies and References Revisited, Journal of
Emerging Trends in Computing and Information
Sciences, 3(4), 456–470.

Stein, L.A., 1987. Delegation Is Inheritance. In Proc.
OOPSLA'87, 138–146

