
INDIRECT OBJECT REPRESENTATION AND ACCESS  
BY MEANS OF CONCEPTS  

 

Alexandr Savinov  
Institute of Mathematics and Informatics, Academy of Scicences of Modova, str. Academiei 5, 2028 Kishinev, Moldova  

savinov@conceptoriented.com, http://conceptoriented.com/savinov  

Keywords: Indirect object representation and access, Concept, Concept-oriented programming, Separation of concerns.  

Abstract: The paper describes a mechanism for indirect object representation and access (ORA) in programming 
languages. The mechanism is based on using a new programming construct which is referred to as concept. 
Concept consists of one object class and one reference class both having their fields and methods. The 
object class is the conventional class as defined in OOP with instances passed by reference. Instances of the 
reference class are passed by value and are intended to represent objects. The reference classes are used to 
describe how objects have to be represented and accessed by providing custom format for their identifiers 
and custom access procedures. Such an approach to programming where concepts are used instead of 
classes is referred to as concept-oriented programming. It generalizes OOP and its main advantage is that it 
allows the programmer to describe not only the functionality of target objects but also intermediate 
functions which are executed behind the scenes as an object is being accessed.  

1 INTRODUCTION 

In OOP all references have the same format and all 
objects are being accessed using one and the same 
procedure. However, these peculiarities are hidden 
and the programmer has the illusion of instant or 
direct access as if the action started immediately 
after the method was called. (It is analogous to the 
action-at-a-distance principle in classical physics.)  

In this paper it is assumed that object access is 
always indirect. This means that object interactions 
are mediated by other objects playing a role of 
spaces or environemnts. The format of references 
can be specified by the programmer and there is 
always some intermediate procedure implementing 
the underlying logic of access. In this sense the main 
goal of this approach consists in providing language 
means for indirect object representation and access 
(ORA) in programming languages. For example, let 
us consider a simple method invocation: 
myObject.myMethod(). In OOP reference 
myObject has some standard format that cannot be 
changed. Using the proposed approach it is possible 
to define any appropriate format of reference 
myObject in the program where the object is used. 
For example, this reference might consist of two 

fields: a unique integer and the time of creation. Or 
it might contain a computer name, port and a unique 
object identifier. The target method myMethod will 
be wrapped into an intermediate reference resolution 
procedure which is also is written by the 
programmer. However, such a customization of 
access retains the illusion of instant access, i.e., we 
still apply the target method to a reference and do 
not care about intermediate actions. 

Currently there exist many different ORA 
mechanisms provided by operating systems, 
middleware or standard libraries. For example, there 
exist numerous standard implementations for such 
ORA mechanisms as local heap, global heap, remote 
objects, persistent objects, managed objects, 
transactional objects etc. Each of them uses its own 
format of references such as 16- or 32-bit integers, 
table name and primary key, computer name and 
object identifier. Accordingly, these references are 
served by their own access procedures which 
however do not belong to the application program. 
Depending on the needs the programmer can create 
program objects in one of these standard containers. 
For example, frequently created and deleted small 
objects could be placed in the local heap. Objects 
intended to be passed over the network are created 



 

as remote objects. And objects that need to have a 
longer life-cycle can be created in the persistent 
container.  

So what is wrong with this traditional approach? 
The main problem is that frequently we want to 
develop our own custom ORA mechanism designed 
for the purposes of this concrete program. In this 
case using some standard library or middleware does 
not help because it is not integral part of the program 
and cannot be (easily) changed and adapted to its 
needs. A solution in this case consists in integrating 
the mechanism of ORA into the program itself at the 
level of the programming language. Such a program 
is dealing not only with objects themselves but also 
how they are represented and accessed. Hence it can 
be viewed as consisting of two types of 
functionality: (i) normal business methods (BMs) 
called explicitly by the programmer, and (ii) object 
representation and access (ORA) methods called 
implicitly behind the scenes. In other words, ORA 
methods constitute hidden part of the program 
overall functionality because their calls cannot be 
found in the source code. In the existing approaches 
the language is designed to describe only BMs while 
the hidden part is separated from the main program 
and belongs to the operating system level, 
middleware or a library. In the proposed approach 
this hidden ORA functionality is integral part of the 
program in the sense that it is described along with 
the objects using appropriate languages constructs. 
For example, the programmer might develop a 
custom local heap, global heap or any other type of 
container implementing one or another ORA 
strategy which specific to this system.  

A program consisting of the two types of 
functions can be viewed and designed as a structured 
space described in Section 2. In order to define how 
program objects have to be represented and accessed 
we propose a new language construct, called 
concept, which is described in Section 3: In 
particular, this new construct allows the programmer 
to implement the following two mechanisms: 
reference substitution and resolution is described in 
Section 4 and reference concatenation is described in 
Section 5. Section 6 describes some related work 
and Section 6 provides concluding remarks.  

2 OBJECTS IN SPACE  

A program in the described approach can be viewed 
as a set of nested spaces where objects live (Fig. 1). 
Each space has one parent space and a number of 
child spaces or objects. This space structure is 

precisely what is referred to as physical structure in 
the concept-oriented data model (Savinov, 2006). 
According to this analogy objects can interact only 
by intersecting the intermediate space borders. Any 
access request such as a method call or message 
cannot directly (instantaneously) reach its target 
object. Instead, it follows some access path starting 
from the source context and leading to the target 
context. Each object is a unique position within the 
structured space which is stored and passed via 
references. In order to access an object it is 
necessary to get its reference and then to interpret it 
as an address in the space. This is precisely why 
such an access method is referred to as indirect. 
Each intermediate border along the access path is 
actually a normal object with special functions for 
intermediate processing. These intermediate 
functions are triggered automatically as some access 
request intersects this border. The target method is 
only the last step in this indirect access procedure 
and frequently it accounts for a relatively small 
portion of the overall system complexity. In large 
systems most of their functionality is concentrated 
on intermediate space borders. Notice that these 
functions are hidden because they are never called 
explicitly in the program. For example, if a Java 
method is called then the target reference is resolved 
into a memory handle, which is then resolved into a 
physical address, which in turn is somehow 
processed by CPU and finally is passed to the 
hardware memory manager. Notice that all these 
actions are executed behind the scenes and are not 
part of the program. In this sense the goal of the 
proposed approach consists in proving support for 
describing such a structured space at the level of the 
programming language.  
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Figure 1: Program structure. 
 
Each space is responsible for ORA to its 

children. In particular, it determines the format of its 
own local identifiers used to distinguish internal 
elements. Whenever an internal object needs to be 
accessed, its space has to resolve the local identifier. 
Such a structure is analogous to a hierarchical 
coordinate system. For example, postal address is 
specified as a country name, city, street and house 



 

number. Countries are specified in the outer most 
space; then each country has a number of cities and 
so on. In the described approach we assume that 
objects in the program have the same hierarchical 
structure.  

Any hierarchical coordinate system has two 
mechanisms: (i) reference substitution (Section 4), 
and (ii) reference concatenation (Section 5). 
Reference substitution allows us to introduce new 
object identifiers which substitute existing 
identifiers. For example, a computer name (DNS) 
substitutes for some IP address, which in turn 
substitutes for some physical (MAC) address. Java 
reference is a substitute for some memory handle, 
which in turn replaces some physical address in 
memory. This mechanism allows us to bring a new 
level of indirection and unbound objects identifiers 
from the reality. However, in order to access such an 
indirectly represented object in future we need to 
resolve its reference. This process of resolution 
proceeds infinitely deeply in the physical structure. 
For example, an object physical address is somehow 
processed by the memory manager, which translates 
it into commands for the memory chip, which then 
transforms these commands to analogue impulses 
and so on. However, we always can (and should) 
choose some level of representation which is 
considered final and ultimate. In other words, we 
assume that there is some special identification 
system, called root, all our references are resolved 
into. Normally the root space is provided by the 
compiler and depends on the platform. It is precisely 
what is used in OOP to directly representing all 
objects.  

The dual mechanism of reference concatenation 
allows us to create hierarchical references from 
several segments. Each next segment in such a 
complex reference identifies the next space or object 
relative to the previous segment. For example, one 
postal address concatenates several segments such as 
country, city, street and house. Each segment 
describes a context for the next segment. Domain 
name system has also a hierarchical structure where 
segments are concatenated. For example, 
www.icsoft.org consists of three segments with high 
segment org followed by the second segment icsoft 
and ending with low segment www.  

Thus any object in the structured space and any 
object in the proposed approach are identified by a 
complex reference consisting of several segments. 
Each segment is a position of this object relative to 
the parent object (concatenation). On the other hand, 
each segment substitutes for and needs to be 
resolved into some root reference which can be then 

used for direct access. For example, a persistent 
object could be identified by three segments: a 
database name, a table name and a primary key. In 
order to access such an indirectly represented object 
we need to intersect three borders each of which 
triggers some functionality. In particular, each of 
these segments has to be resolved into its root 
reference which has been substituted.  

3 CONCEPT DEFINITION  

A hierarchical coordinate system described in the 
previous section can be modelled using a new 
programming construct, called concept. Concept is a 
pair consisting of two classes: an object class and a 
reference class. The object class is a normal class as 
used in OOP (so concept without a reference class is 
equivalent to class as defined in OOP). Its instances, 
called objects, are passed by means of references. 
Instances of the reference class are passed by value 
and are intended to represent objects. Thus an object 
reference is its address which can be stored and 
passed by value to other objects as its representative.  

It is important that concept is by definition a dual 
construct and its two constituents are intended to 
describe simultaneously two types of functionality. 
Notice that they can be separated only in special 
cases where a concept with the empty reference 
class is a normal class while a concept with the 
empty object class describes some reference format 
or an object passed by value. Concepts are used 
instead of classes to declare a type of variables, 
parameters, fields and other elements of the 
program. An approach to programming based on 
using concepts is referred to as concept-oriented 
programming (Savinov, 2005).  

 
Listing 1: Concept definition.  

01 concept MyConcept in ParentConcept  
02   class {  
03     double objField; // Passed by ref  
04     void continue() { ... }  
05     int myMethod() { ... }  
06   }  
07   reference {  
08     int refField; // Passed by value  
09     void continue() { ... }  
10     int myMethod() {  
11       ...  
12       double tmp = context.objField;  
13       ...  
14     }  
15   }  

 
Listing 1 is an example of concept definition. Its 

object class (lines 2-6) has one double field (line 3), 



 

one special method continue (line 4) and one 
normal method myMethod (line 5). The reference 
class (lines 7-15) has one integer field (line 8) 
intended to identify other objects, one special 
method continue intended to resolve this 
reference (line 9), and one normal method 
myMethod (lines 10-14). Notice that one concept 
may have two definitions for one method, which are 
called dual methods. Once we have defined some 
concept it can be used as a type. For example, we 
might define a field or a variable as follows: 
MyConcept myVar; After that this variable can 
be used as usual for method invocation: 
myVar.myMethod(); However, in contrast to 
OOP, this variable may store rather complex data 
which is the address of this object. The object itself 
may reside anywhere in the world and be accessed 
via rather complex procedure executed behind the 
scenes after this method is called.  

In terms of the hierarchical coordinate system 
described in the previous section an object of a 
concept is one space and a reference of a concept is 
one coordinate within this space. Normally one 
concept produces many objects and each of these 
objects has many references representing internal 
objects. An object where this reference has been 
created is referred to as context. Thus an important 
distinguishing feature of CoP is that any element of 
the program lives in the context of some other 
object. Access to the current context in the program 
code is provided by the keyword 'context'. If 
this keyword occures in some reference method then 
it provides access to the object of this same concept 
where this reference has been created. For example, 
reference method myMethod in Listing 1 (lines 10-
14) uses this keyword in order to get a double value 
stored in the object of this concept (line 12).  

Each reference is intended to identify one 
internal object within its context. Nested space 
structure is modelled via concept inclusion relation, 
which means that any concept has to specify a parent 
concept in its declaration. For example, concept 
MyConcept in Listing 1 is included in 
ParentConcept using keword 'in ' (line 1) As 
a consequence objects of MyConcept will be 
represented by means of references of 
ParentConcept. Objects and references exist at 
run-time within a hierarchy having the structure 
defined by the concept inclusion relation. A property 
of this hierarchy is that objects and references 
interleave so that each reference represents some 
object which has a number of its own references 
which again represent some objects and so on. For 
example, in Fig. 2 objects and reference are denoted 
by white and grey rectangles, respectively. Arrows 

denote ‘representd by’ relationship between objects 
and references. One root object X has two references 
which represent two objects (reference A represents 
object Y). Each of these two objects also has two 
references representing target objects without 
references (reference B in context Y represents 
object Z). Any object is a context for all elements 
which are positioned below.  
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Figure 2: Object and reference run-time structure. 
 
An object is represented by its complex 

reference, which is a sequence of segments where 
each segment is one parent concept reference. The 
first segment is of root concept (the root of the 
concept hierarchy). The second segment is of the 
next child concept leading to the target object and so 
on. Each intermediate segment represents one 
context. For example, object Z in Fig. 2 is 
represented by a complex reference consisting of 
two segments A and B: <A,B> The first high 
segment A represents context Y while the second low 
segment B represents context Z which is the target 
object. Notice that there is always some initial well 
known context we start from, which needs not to be 
represented like X in this example.  

A concept has two special continuation methods 
defined in its object class and reference class (lines 4 
and 9 in Listing 1). They play a very important role 
in the ORA mechanism by providing a door in the 
space border described by this concept. The 
reference continuation method allows us to pass 
through this reference to the parent reference. The 
object continuation method allows us to pass 
through this object to the parent object. In this paper 
we consider only the reference continuation method 
the main role of which consists in resolving this 
reference. Given a complex reference the ORA 
mechanism has to resolve its segments into the root 
references which are used for direct access to the 
represented objects.  

4 REFERENCE SUBSTITUTION  

The mechanism of reference substitution and 
resolution is intended for creating a new level of 
indirection where a new format of reference is used 



 

to represent objects instead of existing references. 
Whenever an object is going be accessed this new 
reference has to be resolved into the substituted 
reference. In CoP each new child concept in the 
inclusion hierarchy can define its own reference 
which then substitutes for a parent reference. Thus 
each new child concept can be used as a new level of 
indirection by introducing a new format of 
references. For example, in Fig. 3 reference C 
indirectly represents some target object by 
substituting for reference B, which in turn substitutes 
for reference A of the root type. Accordingly, in 
order to access such an object it is necessary to 
resolve reference C into A and only after that to 
execute the target method specified in the source 
context. Thus the target method is wrapped into the 
resolution procedure with the sequence shown by 
arrows in Fig. 3.  
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Figure 3: Reference substitution and resolution. 

 
An example in Listing 2 illustrates the logic of 

reference substitution and resolution. The general 
goal is that we want to represent our objects 
indirectly by using our own custom references but at 
the same time retaining the illusion of instant access, 
which means that we apply methods as usual and all 
the necessary intermediate operations are carried out 
seamlessly behind the scenes. More specifically, the 
goal consists in developing a very simple persistent 
storage mechanism where objects of arbitrary target 
classes are identified by their integer primary keys. 
The logic of ORA is described in concept 
Persistent. It has one static field (line 3) in its 
object class, which is a reference to a real persistent 
storage like database.  

In order to uniquely identify objects in the 
context of the persistent storage we define a 
reference class with one integer field (line 6) which 
contains a value of the primary key for the object of 
internal class included in this concept. The method 
of continuation of the reference class (lines 7-13) is 
intended for resolving this reference into the 

substituted root reference. This method uses the 
integer field as a key and loads the target object 
from the storage (line 9). Here the direct root 
reference to the target object is restored and the 
continuation method applies the next continuation 
method (line 10). This effectively means that the 
compiler will pass control to the restored object and 
the requested business method will be executed. 
When access is finished the state of the target object 
is stored back in the database (line 11).  

Notice that the reference resolution method 
(lines 7-13) is unaware of the target object type and 
the business method being invoked. It simply gets 
control from somewhere, resolves the reference 
(line 9), then passes control further to the just 
resolved object (line 10), and finally stores the 
objects before it returns (line 11). On the other hand 
target objects and their business methods do not 
involve the logic of indirect ORA. Thus we 
effectively separated two concerns: BMs and ORA:  

 
Listing 2: An example of reference substitution.  

01 concept Persistent  
02   class {  
03     static Storage st.create();  
04   }  
05   reference {  
06     long id; // Primary key  
07     void continue() {  
08       print("> Start of resolution\n");  
09       Root r = context.st.load(id);  
10       r.continue();  
11       context.st.store(id, r);  
12       print("< End of resolution\n");  
13     } 
14   }  

 
Let us now consider how this concept is used 

(Listing 3). Assume that a new class Account has 
been developed (lines 1-11), which implements 
some business logic specific to exclusively account 
management such as debiting, crediting, 
getting/setting balance etc. Accounts have to be 
persistent objects. However, we do not want to 
include any logic of ORA into this class. The reason 
is that in future the logic of ORA or the logic of 
account management might well be changed and 
therefore these two concerns should be placed in 
different modules. In order to solve this problem 
class Account is included in concept 
Persistent using keyword 'in' its declaration 
(line 1).  

Because of this inclusion the compiler will 
generate references to account objects as having the 
format of its parent concept, i.e., each account will 
be automatically represented by an integer. When 
the account is going to be accessed the compiler will 
automatically wrap the target business method into 
the resolution procedure provided by the 



 

corresponding reference class. Thus we reached our 
design goal: accounts are represented indirectly by 
integers but can still be used as if they were normal 
objects. For example, method credit in class 
Source gets an account reference as a parameter 
(line 14). Here again, this parameter has the format 
specified by concept Persistent which is a 
parent of class Account. In order to credit the 
account we get its balance (line 15), then add the 
specified amount (line 16) and finally save the new 
balance back in the account object (line 17). 
However, each target account method invocation 
will be executed indirectly using the intermediate 
reference resolution procedure. Method credit 
(line 14-18) will generate the following output:  

$ > Start of resolution  
$   * getBalance is called  
$ < End of resolution  
$ > Start of resolution  
$   * setBalance is called  
$ < End of resolution  

Here we see that both BM invocations are wrapped 
into their reference resolution procedures which 
print a pair of lines around each target method.  

 
Listing 3: An example of indirect ORA.  

01 class Account in Persistent {  
02   double b = 0;  
03   double getBalance() {  
04     print("  * getBalance is called\n");  
05     return b;  
06   }  
07   void setBalance(double t) {  
08     print("  * setBalance is called\n");  
09     b = t;  
10   }  
11 }  
12  
13 class Source {  
14   void credit(Account a, double m) {  
15     double t = a.getBalance();  
16     t += m;  
17     a.setBalance(t);  
18   }  
19 }  

 
An advantage of this procedure is that two types 

of functionality are separated in a principled manner: 
the logic of ORA is described in concept 
Persistent while the business logic is described 
in class Account. The use of the indirectly 
represented objects is completely transparent 
because we are actually unaware of ORA 
mechanism used to access the target account object 
in class Source. Another advantage is that we can 
develop multiple levels of indirection where each 
new level provides references substituting for 
previous (parent) references. For example, if 
accounts have to be represented by their unique 
names then a new concept can be defined which is 

included into concept Persistent. Its reference 
class will have one string field which substitutes for 
some integer which in turn substitutes for a root 
reference. Notice that the source code where account 
objects are used does not depend on all these 
changes. We simply use account objects as if they 
were represented and accessed directly via root 
references while the intermediate code is injected 
automatically by the compiler according to the 
concept inclusion hierarchy.  

5 REFERENCE 
CONCATENATION  

Reference substitution described in the previous 
section is intended for modelling a nested structure 
of indirection. The dual mechanism is referred to as 
reference concatenation and its purpose consists in 
modelling a hierarchical address system. The idea 
here is that an address (coordinate, reference, 
identifier etc.) consists of several segments each of 
them representing the next subspace and the last 
segment representing the target object. This 
sequence of segments is referred to as complex 
reference.  

In the example shown in Listing 2 it was 
assumed that the object class does not produce 
instances because it has only static fields (line 3). In 
this case there exists only one well known persistent 
storage at run-time. However, normally concepts 
will contain non-static fields and hence their object 
classes will be used to produce many instances. If 
concept Persistent has a non-static field in its 
object class then it is not enough to store an integer 
in order to uniquely identify a target object. In 
addition to this integer we have to remember the 
object where it has been created as the first segment. 
In other words, a complete reference has the 
database identifier as the first segment and the 
primary key within this database as the second 
segment. Such a hierarchal reference structure is 
also described by the concept inclusion relation. As 
usual an object is represented by its parent concept 
reference. However, since this reference exists in 
some context we need to represent also this context 
by using its own parent reference and so on till the 
root.  

A program in Listing 4 is a modified example of 
Listing 2. The main difference is that concept 
Persistent has a non-static field referencing a 
persistent storage (line 17). Objects of concept 
Persistent will be represented by references 



 

provided by its parent concept NamedObjects. 
Pbjects of classes included in Persistent (such 
as accounts) will be represented by complex 
references consisting of two segments: database 
string identifier (line 6), and an integer primary key 
(line 21). Since any reference has two segments the 
access procedure consists of two steps. On the first 
step we need to resolve the first segment and enter 
the first context. On the second step it is necessary to 
resolve the second segment and enter the second 
context. The first segment is resolved by the 
reference continuation method of concept 
NamedObjects (lines 7-12). This method simply 
looks up the name in the map (line 9) and then 
proceeds (line 10). After that the second segment 
can be resolved by calling the reference continuation 
method of concept Persistent (lines 22-34). 
This method opens the database before access (line 
25) and closes it after access (line 32) if no other 
processes are using it. The rest of the procedure is 
identical to that in Listing 2.  

 
Listing 4: An example of hierarchical access.  

01 concept NamedObjects  
02   class {  
03     static Map map.create();  
04   }  
05   reference {  
06     String id;  
07     void continue() {  
08       print("> Enter NamedObjects\n");  
09       Root r = context.map.get(id);  
10       r.continue();  
11       print("< Exit NamedObjects \n");  
12     } 
13   } 
14 
15 concept Persistent in NamedObjects  
16   class {  
17     Storage st.create();  
18     int accessCount = 0;  
19   }  
20   reference {  
21     long id; // Primary key  
22     void continue() {  
23       print("  > Enter Persistent\n");  
24       if(context.accessCount++ == 0);  
25         context.st.open();  
26       accessCount++;  
27       Root r = context.st.load(id);  
28       r.continue();  
29       context.st.store(id, r);  
30       accessCount--;  
31       if(context.accessCount == 0);  
32         context.st.close();  
33       print("  < Exit Persistent\n");  
34     } 
35   }  

 
Let us now again consider how this modified 

concept will be used using source code from Listing 

3. Notice that neither class Account nor class 
Source where it is used have to be adapted to the 
modified ORA mechanism of concept 
Persistent. It is a consequence of our design 
where ORA logic is separated from business logic. 
In other words, we still can use class Account as if 
it was represented directly. What has really changed 
is the intermediate ORA procedure executed behind 
the scenes. In particular, the account object passed 
as a parameter to method credit (line 14) will be 
now represented by longer references consisting of 
two segments. In order to invoke an account method 
it is necessary to resolve the database name, then (in 
its context) resolve the object primary key and 
finally call the method using the object direct (root) 
reference. Thus method credit (line 14-18) will 
produce the following output:  

$ > Enter NamedObjects  
$   > Enter Persistent  
$ * getBalance is called  
$   < Exit Persistent  
$ < Exit NamedObjects  
$ > Enter NamedObjects  
$   > Enter Persistent  
$ * setBalance is called  
$   < Exit Persistent  
$ < Exit NamedObjects  

6 RELATED WORK  

OOP provides means for describing object 
functionality using classes and inheritance relation. 
CoP adds means for describing how objects are 
represented and accessed using concept as a 
generalization of class. One method for 
implementing indirect ORA in OOP consists in 
using proxies. Proxy is a new class substituting for 
some target class and explicitly used instead of it. A 
disadvantage of this approach is that we need to 
explicitly use proxy class when we want to work 
with the target class. In contrast, in CoP the 
programmer always works with the target class and 
its methods as if its objects were directly accessible 
while all the intermediate elements are injected 
automatically. A code with proxies is difficult to 
maintain because any change in the target class has 
to be manually reflected in the proxy. Another 
disadvantage is that it is even more difficulty to 
implement nested proxies. And the third problem is 
that proxies do not allow us to implement custom 
reference format.  

One method for implementing custom references 
in C++ consists in using so called smart pointers 
(Stroustrup, 1991). However, it is a rather specific 



 

technique based on using templates, which requires 
a relatively high degree of manual support.  

Aspect-oriented programming (AOP) (Kiczales 
et al., 1997) allows the programmer to inject any 
code in special points of the program. AOP 
introduces an additional construct, called aspect, 
which exists along with classes. In contrast, CoP 
introduces concepts which generalize classes. 
However, like proxies, AOP does not provide any 
means for modelling custom format of references. 

Aspects in AOP can be viewed as an analogue of 
parent concepts in CoP. Both these modules are 
intended to change the behaviour of target classes. In 
terms of AOP, both aspects and parent concepts 
contain some code that is injected in many different 
target classes. The difference is that in AOP target 
injection points are declared in the aspect itself and 
they are unaware of this influence. In contrast, in 
CoP the target classes themselves specify in their 
definition what kind of intermediate code has to be 
injected. The parent concept which contains this 
intermediate code is unaware of the points where its 
code is injected.  

Another related approach is based on using 
mixins (Bracha et al., 1990). In particular, it is 
similar to CoP (and AOP) in its ability to wrap some 
target code into another method (using around 
keyword). It is a convenient addition to OOP which 
however fails to solve the problem of modelling 
references.  

CoP is also similar to context-oriented direction 
in programming and layered design (Constanza et 
al., 2005) because of its ability to put objects in 
context or environment which changes their 
behaviour. In ContextL context-orientation is 
supported by keyword 'in-layer' while in CoP 
a class is included in some parent concept via 'in'.  

The same goal of describing custom environment 
for the program is pursued in the field of reflective 
middleware and metaobject protocols (Kiczales et 
al., 1993). In CoP this task is performed by parent 
concepts which allow the programming to create an 
environment influencing the behaviour of internal 
objects.  

Concepts may have two definitions for one 
method (in the object class and the reference class). 
This property can be used to model super and inner 
methods of classes (Goldberg et al., 2004).  

7 CONCLUSIONS  

In this paper we described an approach to 
indirect representation and access in programming 

languages. Its main distinguishing feature consists in 
possibility to model references and hidden 
functionality which is executed during object access. 
Moreover, it is the only known approach which is 
directly aimed at modelling the structure of 
references and their functions (as opposed to the 
structure of objects and their functions). This goal is 
achieved by introducing a new programming 
construct, called concept, which includes a reference 
class in addition to the conventional object class. An 
important property of this construct is that it can be 
used for describing two sides of any program: 
explicitly invoked business methods and implicitly 
executed intermediate methods. In particular, we 
showed how concepts can be used to implement the 
mechanism of reference substitution and the 
mechanism of reference concatenation. Such an 
approach to programming based on using concepts 
and aimed at describing two types of functionality is 
referred to as the concept-oriented programming. 
This approach can be useful for many types of 
programs but it is especially effective for complex 
systems where intermediate functionality accounts 
for a great deal of the system complexity.  
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