
INDIRECT OBJECT REPRESENTATION AND ACCESS
BY MEANS OF CONCEPTS

Alexandr Savinov
Institute of Mathematics and Informatics, Academy of Scicences of Modova, str. Academiei 5, 2028 Kishinev, Moldova

savinov@conceptoriented.com, http://conceptoriented.com/savinov

Keywords: Indirect object representation and access, Concept, Concept-oriented programming, Separation of concerns.

Abstract: The paper describes a mechanism for indirect object representation and access (ORA) in programming
languages. The mechanism is based on using a new programming construct which is referred to as concept.
Concept consists of one object class and one reference class both having their fields and methods. The
object class is the conventional class as defined in OOP with instances passed by reference. Instances of the
reference class are passed by value and are intended to represent objects. The reference classes are used to
describe how objects have to be represented and accessed by providing custom format for their identifiers
and custom access procedures. Such an approach to programming where concepts are used instead of
classes is referred to as concept-oriented programming. It generalizes OOP and its main advantage is that it
allows the programmer to describe not only the functionality of target objects but also intermediate
functions which are executed behind the scenes as an object is being accessed.

1 INTRODUCTION

In OOP all references have the same format and all
objects are being accessed using one and the same
procedure. However, these peculiarities are hidden
and the programmer has the illusion of instant or
direct access as if the action started immediately
after the method was called. (It is analogous to the
action-at-a-distance principle in classical physics.)

In this paper it is assumed that object access is
always indirect. This means that object interactions
are mediated by other objects playing a role of
spaces or environemnts. The format of references
can be specified by the programmer and there is
always some intermediate procedure implementing
the underlying logic of access. In this sense the main
goal of this approach consists in providing language
means for indirect object representation and access
(ORA) in programming languages. For example, let
us consider a simple method invocation:
myObject.myMethod(). In OOP reference
myObject has some standard format that cannot be
changed. Using the proposed approach it is possible
to define any appropriate format of reference
myObject in the program where the object is used.
For example, this reference might consist of two

fields: a unique integer and the time of creation. Or
it might contain a computer name, port and a unique
object identifier. The target method myMethod will
be wrapped into an intermediate reference resolution
procedure which is also is written by the
programmer. However, such a customization of
access retains the illusion of instant access, i.e., we
still apply the target method to a reference and do
not care about intermediate actions.

Currently there exist many different ORA
mechanisms provided by operating systems,
middleware or standard libraries. For example, there
exist numerous standard implementations for such
ORA mechanisms as local heap, global heap, remote
objects, persistent objects, managed objects,
transactional objects etc. Each of them uses its own
format of references such as 16- or 32-bit integers,
table name and primary key, computer name and
object identifier. Accordingly, these references are
served by their own access procedures which
however do not belong to the application program.
Depending on the needs the programmer can create
program objects in one of these standard containers.
For example, frequently created and deleted small
objects could be placed in the local heap. Objects
intended to be passed over the network are created

as remote objects. And objects that need to have a
longer life-cycle can be created in the persistent
container.

So what is wrong with this traditional approach?
The main problem is that frequently we want to
develop our own custom ORA mechanism designed
for the purposes of this concrete program. In this
case using some standard library or middleware does
not help because it is not integral part of the program
and cannot be (easily) changed and adapted to its
needs. A solution in this case consists in integrating
the mechanism of ORA into the program itself at the
level of the programming language. Such a program
is dealing not only with objects themselves but also
how they are represented and accessed. Hence it can
be viewed as consisting of two types of
functionality: (i) normal business methods (BMs)
called explicitly by the programmer, and (ii) object
representation and access (ORA) methods called
implicitly behind the scenes. In other words, ORA
methods constitute hidden part of the program
overall functionality because their calls cannot be
found in the source code. In the existing approaches
the language is designed to describe only BMs while
the hidden part is separated from the main program
and belongs to the operating system level,
middleware or a library. In the proposed approach
this hidden ORA functionality is integral part of the
program in the sense that it is described along with
the objects using appropriate languages constructs.
For example, the programmer might develop a
custom local heap, global heap or any other type of
container implementing one or another ORA
strategy which specific to this system.

A program consisting of the two types of
functions can be viewed and designed as a structured
space described in Section 2. In order to define how
program objects have to be represented and accessed
we propose a new language construct, called
concept, which is described in Section 3: In
particular, this new construct allows the programmer
to implement the following two mechanisms:
reference substitution and resolution is described in
Section 4 and reference concatenation is described in
Section 5. Section 6 describes some related work
and Section 6 provides concluding remarks.

2 OBJECTS IN SPACE

A program in the described approach can be viewed
as a set of nested spaces where objects live (Fig. 1).
Each space has one parent space and a number of
child spaces or objects. This space structure is

precisely what is referred to as physical structure in
the concept-oriented data model (Savinov, 2006).
According to this analogy objects can interact only
by intersecting the intermediate space borders. Any
access request such as a method call or message
cannot directly (instantaneously) reach its target
object. Instead, it follows some access path starting
from the source context and leading to the target
context. Each object is a unique position within the
structured space which is stored and passed via
references. In order to access an object it is
necessary to get its reference and then to interpret it
as an address in the space. This is precisely why
such an access method is referred to as indirect.
Each intermediate border along the access path is
actually a normal object with special functions for
intermediate processing. These intermediate
functions are triggered automatically as some access
request intersects this border. The target method is
only the last step in this indirect access procedure
and frequently it accounts for a relatively small
portion of the overall system complexity. In large
systems most of their functionality is concentrated
on intermediate space borders. Notice that these
functions are hidden because they are never called
explicitly in the program. For example, if a Java
method is called then the target reference is resolved
into a memory handle, which is then resolved into a
physical address, which in turn is somehow
processed by CPU and finally is passed to the
hardware memory manager. Notice that all these
actions are executed behind the scenes and are not
part of the program. In this sense the goal of the
proposed approach consists in proving support for
describing such a structured space at the level of the
programming language.

 start

end
RA

BM

target objects

intermediate
contexts

Figure 1: Program structure.

Each space is responsible for ORA to its

children. In particular, it determines the format of its
own local identifiers used to distinguish internal
elements. Whenever an internal object needs to be
accessed, its space has to resolve the local identifier.
Such a structure is analogous to a hierarchical
coordinate system. For example, postal address is
specified as a country name, city, street and house

number. Countries are specified in the outer most
space; then each country has a number of cities and
so on. In the described approach we assume that
objects in the program have the same hierarchical
structure.

Any hierarchical coordinate system has two
mechanisms: (i) reference substitution (Section 4),
and (ii) reference concatenation (Section 5).
Reference substitution allows us to introduce new
object identifiers which substitute existing
identifiers. For example, a computer name (DNS)
substitutes for some IP address, which in turn
substitutes for some physical (MAC) address. Java
reference is a substitute for some memory handle,
which in turn replaces some physical address in
memory. This mechanism allows us to bring a new
level of indirection and unbound objects identifiers
from the reality. However, in order to access such an
indirectly represented object in future we need to
resolve its reference. This process of resolution
proceeds infinitely deeply in the physical structure.
For example, an object physical address is somehow
processed by the memory manager, which translates
it into commands for the memory chip, which then
transforms these commands to analogue impulses
and so on. However, we always can (and should)
choose some level of representation which is
considered final and ultimate. In other words, we
assume that there is some special identification
system, called root, all our references are resolved
into. Normally the root space is provided by the
compiler and depends on the platform. It is precisely
what is used in OOP to directly representing all
objects.

The dual mechanism of reference concatenation
allows us to create hierarchical references from
several segments. Each next segment in such a
complex reference identifies the next space or object
relative to the previous segment. For example, one
postal address concatenates several segments such as
country, city, street and house. Each segment
describes a context for the next segment. Domain
name system has also a hierarchical structure where
segments are concatenated. For example,
www.icsoft.org consists of three segments with high
segment org followed by the second segment icsoft
and ending with low segment www.

Thus any object in the structured space and any
object in the proposed approach are identified by a
complex reference consisting of several segments.
Each segment is a position of this object relative to
the parent object (concatenation). On the other hand,
each segment substitutes for and needs to be
resolved into some root reference which can be then

used for direct access. For example, a persistent
object could be identified by three segments: a
database name, a table name and a primary key. In
order to access such an indirectly represented object
we need to intersect three borders each of which
triggers some functionality. In particular, each of
these segments has to be resolved into its root
reference which has been substituted.

3 CONCEPT DEFINITION

A hierarchical coordinate system described in the
previous section can be modelled using a new
programming construct, called concept. Concept is a
pair consisting of two classes: an object class and a
reference class. The object class is a normal class as
used in OOP (so concept without a reference class is
equivalent to class as defined in OOP). Its instances,
called objects, are passed by means of references.
Instances of the reference class are passed by value
and are intended to represent objects. Thus an object
reference is its address which can be stored and
passed by value to other objects as its representative.

It is important that concept is by definition a dual
construct and its two constituents are intended to
describe simultaneously two types of functionality.
Notice that they can be separated only in special
cases where a concept with the empty reference
class is a normal class while a concept with the
empty object class describes some reference format
or an object passed by value. Concepts are used
instead of classes to declare a type of variables,
parameters, fields and other elements of the
program. An approach to programming based on
using concepts is referred to as concept-oriented
programming (Savinov, 2005).

Listing 1: Concept definition.

01 concept MyConcept in ParentConcept
02 class {
03 double objField; // Passed by ref
04 void continue() { ... }
05 int myMethod() { ... }
06 }
07 reference {
08 int refField; // Passed by value
09 void continue() { ... }
10 int myMethod() {
11 ...
12 double tmp = context.objField;
13 ...
14 }
15 }

Listing 1 is an example of concept definition. Its

object class (lines 2-6) has one double field (line 3),

one special method continue (line 4) and one
normal method myMethod (line 5). The reference
class (lines 7-15) has one integer field (line 8)
intended to identify other objects, one special
method continue intended to resolve this
reference (line 9), and one normal method
myMethod (lines 10-14). Notice that one concept
may have two definitions for one method, which are
called dual methods. Once we have defined some
concept it can be used as a type. For example, we
might define a field or a variable as follows:
MyConcept myVar; After that this variable can
be used as usual for method invocation:
myVar.myMethod(); However, in contrast to
OOP, this variable may store rather complex data
which is the address of this object. The object itself
may reside anywhere in the world and be accessed
via rather complex procedure executed behind the
scenes after this method is called.

In terms of the hierarchical coordinate system
described in the previous section an object of a
concept is one space and a reference of a concept is
one coordinate within this space. Normally one
concept produces many objects and each of these
objects has many references representing internal
objects. An object where this reference has been
created is referred to as context. Thus an important
distinguishing feature of CoP is that any element of
the program lives in the context of some other
object. Access to the current context in the program
code is provided by the keyword 'context'. If
this keyword occures in some reference method then
it provides access to the object of this same concept
where this reference has been created. For example,
reference method myMethod in Listing 1 (lines 10-
14) uses this keyword in order to get a double value
stored in the object of this concept (line 12).

Each reference is intended to identify one
internal object within its context. Nested space
structure is modelled via concept inclusion relation,
which means that any concept has to specify a parent
concept in its declaration. For example, concept
MyConcept in Listing 1 is included in
ParentConcept using keword 'in ' (line 1) As
a consequence objects of MyConcept will be
represented by means of references of
ParentConcept. Objects and references exist at
run-time within a hierarchy having the structure
defined by the concept inclusion relation. A property
of this hierarchy is that objects and references
interleave so that each reference represents some
object which has a number of its own references
which again represent some objects and so on. For
example, in Fig. 2 objects and reference are denoted
by white and grey rectangles, respectively. Arrows

denote ‘representd by’ relationship between objects
and references. One root object X has two references
which represent two objects (reference A represents
object Y). Each of these two objects also has two
references representing target objects without
references (reference B in context Y represents
object Z). Any object is a context for all elements
which are positioned below.

 X

Y

Z

A

B

Figure 2: Object and reference run-time structure.

An object is represented by its complex

reference, which is a sequence of segments where
each segment is one parent concept reference. The
first segment is of root concept (the root of the
concept hierarchy). The second segment is of the
next child concept leading to the target object and so
on. Each intermediate segment represents one
context. For example, object Z in Fig. 2 is
represented by a complex reference consisting of
two segments A and B: <A,B> The first high
segment A represents context Y while the second low
segment B represents context Z which is the target
object. Notice that there is always some initial well
known context we start from, which needs not to be
represented like X in this example.

A concept has two special continuation methods
defined in its object class and reference class (lines 4
and 9 in Listing 1). They play a very important role
in the ORA mechanism by providing a door in the
space border described by this concept. The
reference continuation method allows us to pass
through this reference to the parent reference. The
object continuation method allows us to pass
through this object to the parent object. In this paper
we consider only the reference continuation method
the main role of which consists in resolving this
reference. Given a complex reference the ORA
mechanism has to resolve its segments into the root
references which are used for direct access to the
represented objects.

4 REFERENCE SUBSTITUTION

The mechanism of reference substitution and
resolution is intended for creating a new level of
indirection where a new format of reference is used

to represent objects instead of existing references.
Whenever an object is going be accessed this new
reference has to be resolved into the substituted
reference. In CoP each new child concept in the
inclusion hierarchy can define its own reference
which then substitutes for a parent reference. Thus
each new child concept can be used as a new level of
indirection by introducing a new format of
references. For example, in Fig. 3 reference C
indirectly represents some target object by
substituting for reference B, which in turn substitutes
for reference A of the root type. Accordingly, in
order to access such an object it is necessary to
resolve reference C into A and only after that to
execute the target method specified in the source
context. Thus the target method is wrapped into the
resolution procedure with the sequence shown by
arrows in Fig. 3.

Context X

reference B
is resolved into A

Direct call of target BM

reference C
is resolved into B

Start of resolution

Context Y

Z

ref A

ref B

ref C

Figure 3: Reference substitution and resolution.

An example in Listing 2 illustrates the logic of

reference substitution and resolution. The general
goal is that we want to represent our objects
indirectly by using our own custom references but at
the same time retaining the illusion of instant access,
which means that we apply methods as usual and all
the necessary intermediate operations are carried out
seamlessly behind the scenes. More specifically, the
goal consists in developing a very simple persistent
storage mechanism where objects of arbitrary target
classes are identified by their integer primary keys.
The logic of ORA is described in concept
Persistent. It has one static field (line 3) in its
object class, which is a reference to a real persistent
storage like database.

In order to uniquely identify objects in the
context of the persistent storage we define a
reference class with one integer field (line 6) which
contains a value of the primary key for the object of
internal class included in this concept. The method
of continuation of the reference class (lines 7-13) is
intended for resolving this reference into the

substituted root reference. This method uses the
integer field as a key and loads the target object
from the storage (line 9). Here the direct root
reference to the target object is restored and the
continuation method applies the next continuation
method (line 10). This effectively means that the
compiler will pass control to the restored object and
the requested business method will be executed.
When access is finished the state of the target object
is stored back in the database (line 11).

Notice that the reference resolution method
(lines 7-13) is unaware of the target object type and
the business method being invoked. It simply gets
control from somewhere, resolves the reference
(line 9), then passes control further to the just
resolved object (line 10), and finally stores the
objects before it returns (line 11). On the other hand
target objects and their business methods do not
involve the logic of indirect ORA. Thus we
effectively separated two concerns: BMs and ORA:

Listing 2: An example of reference substitution.

01 concept Persistent
02 class {
03 static Storage st.create();
04 }
05 reference {
06 long id; // Primary key
07 void continue() {
08 print("> Start of resolution\n");
09 Root r = context.st.load(id);
10 r.continue();
11 context.st.store(id, r);
12 print("< End of resolution\n");
13 }
14 }

Let us now consider how this concept is used

(Listing 3). Assume that a new class Account has
been developed (lines 1-11), which implements
some business logic specific to exclusively account
management such as debiting, crediting,
getting/setting balance etc. Accounts have to be
persistent objects. However, we do not want to
include any logic of ORA into this class. The reason
is that in future the logic of ORA or the logic of
account management might well be changed and
therefore these two concerns should be placed in
different modules. In order to solve this problem
class Account is included in concept
Persistent using keyword 'in' its declaration
(line 1).

Because of this inclusion the compiler will
generate references to account objects as having the
format of its parent concept, i.e., each account will
be automatically represented by an integer. When
the account is going to be accessed the compiler will
automatically wrap the target business method into
the resolution procedure provided by the

corresponding reference class. Thus we reached our
design goal: accounts are represented indirectly by
integers but can still be used as if they were normal
objects. For example, method credit in class
Source gets an account reference as a parameter
(line 14). Here again, this parameter has the format
specified by concept Persistent which is a
parent of class Account. In order to credit the
account we get its balance (line 15), then add the
specified amount (line 16) and finally save the new
balance back in the account object (line 17).
However, each target account method invocation
will be executed indirectly using the intermediate
reference resolution procedure. Method credit
(line 14-18) will generate the following output:

$ > Start of resolution
$ * getBalance is called
$ < End of resolution
$ > Start of resolution
$ * setBalance is called
$ < End of resolution

Here we see that both BM invocations are wrapped
into their reference resolution procedures which
print a pair of lines around each target method.

Listing 3: An example of indirect ORA.

01 class Account in Persistent {
02 double b = 0;
03 double getBalance() {
04 print(" * getBalance is called\n");
05 return b;
06 }
07 void setBalance(double t) {
08 print(" * setBalance is called\n");
09 b = t;
10 }
11 }
12
13 class Source {
14 void credit(Account a, double m) {
15 double t = a.getBalance();
16 t += m;
17 a.setBalance(t);
18 }
19 }

An advantage of this procedure is that two types

of functionality are separated in a principled manner:
the logic of ORA is described in concept
Persistent while the business logic is described
in class Account. The use of the indirectly
represented objects is completely transparent
because we are actually unaware of ORA
mechanism used to access the target account object
in class Source. Another advantage is that we can
develop multiple levels of indirection where each
new level provides references substituting for
previous (parent) references. For example, if
accounts have to be represented by their unique
names then a new concept can be defined which is

included into concept Persistent. Its reference
class will have one string field which substitutes for
some integer which in turn substitutes for a root
reference. Notice that the source code where account
objects are used does not depend on all these
changes. We simply use account objects as if they
were represented and accessed directly via root
references while the intermediate code is injected
automatically by the compiler according to the
concept inclusion hierarchy.

5 REFERENCE
CONCATENATION

Reference substitution described in the previous
section is intended for modelling a nested structure
of indirection. The dual mechanism is referred to as
reference concatenation and its purpose consists in
modelling a hierarchical address system. The idea
here is that an address (coordinate, reference,
identifier etc.) consists of several segments each of
them representing the next subspace and the last
segment representing the target object. This
sequence of segments is referred to as complex
reference.

In the example shown in Listing 2 it was
assumed that the object class does not produce
instances because it has only static fields (line 3). In
this case there exists only one well known persistent
storage at run-time. However, normally concepts
will contain non-static fields and hence their object
classes will be used to produce many instances. If
concept Persistent has a non-static field in its
object class then it is not enough to store an integer
in order to uniquely identify a target object. In
addition to this integer we have to remember the
object where it has been created as the first segment.
In other words, a complete reference has the
database identifier as the first segment and the
primary key within this database as the second
segment. Such a hierarchal reference structure is
also described by the concept inclusion relation. As
usual an object is represented by its parent concept
reference. However, since this reference exists in
some context we need to represent also this context
by using its own parent reference and so on till the
root.

A program in Listing 4 is a modified example of
Listing 2. The main difference is that concept
Persistent has a non-static field referencing a
persistent storage (line 17). Objects of concept
Persistent will be represented by references

provided by its parent concept NamedObjects.
Pbjects of classes included in Persistent (such
as accounts) will be represented by complex
references consisting of two segments: database
string identifier (line 6), and an integer primary key
(line 21). Since any reference has two segments the
access procedure consists of two steps. On the first
step we need to resolve the first segment and enter
the first context. On the second step it is necessary to
resolve the second segment and enter the second
context. The first segment is resolved by the
reference continuation method of concept
NamedObjects (lines 7-12). This method simply
looks up the name in the map (line 9) and then
proceeds (line 10). After that the second segment
can be resolved by calling the reference continuation
method of concept Persistent (lines 22-34).
This method opens the database before access (line
25) and closes it after access (line 32) if no other
processes are using it. The rest of the procedure is
identical to that in Listing 2.

Listing 4: An example of hierarchical access.

01 concept NamedObjects
02 class {
03 static Map map.create();
04 }
05 reference {
06 String id;
07 void continue() {
08 print("> Enter NamedObjects\n");
09 Root r = context.map.get(id);
10 r.continue();
11 print("< Exit NamedObjects \n");
12 }
13 }
14
15 concept Persistent in NamedObjects
16 class {
17 Storage st.create();
18 int accessCount = 0;
19 }
20 reference {
21 long id; // Primary key
22 void continue() {
23 print(" > Enter Persistent\n");
24 if(context.accessCount++ == 0);
25 context.st.open();
26 accessCount++;
27 Root r = context.st.load(id);
28 r.continue();
29 context.st.store(id, r);
30 accessCount--;
31 if(context.accessCount == 0);
32 context.st.close();
33 print(" < Exit Persistent\n");
34 }
35 }

Let us now again consider how this modified

concept will be used using source code from Listing

3. Notice that neither class Account nor class
Source where it is used have to be adapted to the
modified ORA mechanism of concept
Persistent. It is a consequence of our design
where ORA logic is separated from business logic.
In other words, we still can use class Account as if
it was represented directly. What has really changed
is the intermediate ORA procedure executed behind
the scenes. In particular, the account object passed
as a parameter to method credit (line 14) will be
now represented by longer references consisting of
two segments. In order to invoke an account method
it is necessary to resolve the database name, then (in
its context) resolve the object primary key and
finally call the method using the object direct (root)
reference. Thus method credit (line 14-18) will
produce the following output:

$ > Enter NamedObjects
$ > Enter Persistent
$ * getBalance is called
$ < Exit Persistent
$ < Exit NamedObjects
$ > Enter NamedObjects
$ > Enter Persistent
$ * setBalance is called
$ < Exit Persistent
$ < Exit NamedObjects

6 RELATED WORK

OOP provides means for describing object
functionality using classes and inheritance relation.
CoP adds means for describing how objects are
represented and accessed using concept as a
generalization of class. One method for
implementing indirect ORA in OOP consists in
using proxies. Proxy is a new class substituting for
some target class and explicitly used instead of it. A
disadvantage of this approach is that we need to
explicitly use proxy class when we want to work
with the target class. In contrast, in CoP the
programmer always works with the target class and
its methods as if its objects were directly accessible
while all the intermediate elements are injected
automatically. A code with proxies is difficult to
maintain because any change in the target class has
to be manually reflected in the proxy. Another
disadvantage is that it is even more difficulty to
implement nested proxies. And the third problem is
that proxies do not allow us to implement custom
reference format.

One method for implementing custom references
in C++ consists in using so called smart pointers
(Stroustrup, 1991). However, it is a rather specific

technique based on using templates, which requires
a relatively high degree of manual support.

Aspect-oriented programming (AOP) (Kiczales
et al., 1997) allows the programmer to inject any
code in special points of the program. AOP
introduces an additional construct, called aspect,
which exists along with classes. In contrast, CoP
introduces concepts which generalize classes.
However, like proxies, AOP does not provide any
means for modelling custom format of references.

Aspects in AOP can be viewed as an analogue of
parent concepts in CoP. Both these modules are
intended to change the behaviour of target classes. In
terms of AOP, both aspects and parent concepts
contain some code that is injected in many different
target classes. The difference is that in AOP target
injection points are declared in the aspect itself and
they are unaware of this influence. In contrast, in
CoP the target classes themselves specify in their
definition what kind of intermediate code has to be
injected. The parent concept which contains this
intermediate code is unaware of the points where its
code is injected.

Another related approach is based on using
mixins (Bracha et al., 1990). In particular, it is
similar to CoP (and AOP) in its ability to wrap some
target code into another method (using around
keyword). It is a convenient addition to OOP which
however fails to solve the problem of modelling
references.

CoP is also similar to context-oriented direction
in programming and layered design (Constanza et
al., 2005) because of its ability to put objects in
context or environment which changes their
behaviour. In ContextL context-orientation is
supported by keyword 'in-layer' while in CoP
a class is included in some parent concept via 'in'.

The same goal of describing custom environment
for the program is pursued in the field of reflective
middleware and metaobject protocols (Kiczales et
al., 1993). In CoP this task is performed by parent
concepts which allow the programming to create an
environment influencing the behaviour of internal
objects.

Concepts may have two definitions for one
method (in the object class and the reference class).
This property can be used to model super and inner
methods of classes (Goldberg et al., 2004).

7 CONCLUSIONS

In this paper we described an approach to
indirect representation and access in programming

languages. Its main distinguishing feature consists in
possibility to model references and hidden
functionality which is executed during object access.
Moreover, it is the only known approach which is
directly aimed at modelling the structure of
references and their functions (as opposed to the
structure of objects and their functions). This goal is
achieved by introducing a new programming
construct, called concept, which includes a reference
class in addition to the conventional object class. An
important property of this construct is that it can be
used for describing two sides of any program:
explicitly invoked business methods and implicitly
executed intermediate methods. In particular, we
showed how concepts can be used to implement the
mechanism of reference substitution and the
mechanism of reference concatenation. Such an
approach to programming based on using concepts
and aimed at describing two types of functionality is
referred to as the concept-oriented programming.
This approach can be useful for many types of
programs but it is especially effective for complex
systems where intermediate functionality accounts
for a great deal of the system complexity.

REFERENCES

Bracha, G., Cook, W., 1990. Mixin-based inheritance. In
OOPSLA/ECOOP’90, ACM SIGPLAN Notices,
25(10), 303-311.

Constanza, P., Hirschfeld, R., 2005. Language constructs
for context-oriented programming. In Dynamic
Languages Symposium, co-located with
OOPSLA'05, October 18, 2005, San Diego,
California, USA.

Goldberg et al., 2004. Super and Inner – Together at Last,
In OOPSLA’04.

Kiczales, G., Ashley, J.M., Rodriguez, L., Vahdat, A.,
Bobrow, D.G., 1993. Metaobject protocols: Why we
want them and what else they can do. In: Paepcke, A.
(ed.) Object-Oriented Programming: The CLOS
Perspective, 101-118, The MIT Press, Cambridge,
MA.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M. and Irwin, J. Aspect-
Oriented Programming, Proc. ECOOP’97, LNCS
1241, 220-242, Jyvaskyla, Finalnd, 1997.

Savinov, A., 2005. Concept as a generalization of class
and principles of the concept-oriented programming.
Comp. Sci. J. of Moldova, 13(3), 292-335.

Savinov, A., 2006. Grouping and Aggregation in the
Concept-Oriented Data Model. In SAC’06, 21st ACM
Symposium on Applied Computing, 482-486.

Stroustrup, B., 1991. The C++ Programming Language,
Second Edition, Addison Wesley.

