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Abstract. In this paper we describe a new approach to programming which generalizes 
object-oriented programming. It is based on using a new programming construct, called 
concept, which generalizes classes. Concept is defined as a pair of two classes: one 
reference class and one object class. Each concept has a parent concept which is 
specified using inclusion relation generalizing inheritance. We describe several 
important mechanisms such as reference resolution, context stack, dual methods and 
life-cycle management, inheritance and polymorphism. This approach to programming 
is positioned as a new programming paradigm and therefore we formulate its main 
principles and rules.  
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1 Introduction  
The problem of object identity has been paid significant attention in computer science. In particular, it 
is considered a pillar of object orientation [Ken91] and one of the corner stones of data modelling 
[Wie95]. References, keys, surrogates, pointers, names and other identification techniques have been 
used for many decades. Yet, identity modelling is still much less developed domain when compared 
with entity/object modelling. In particular, two currently dominating disciplines – object-oriented 
programming and relation model – are targeted mainly at describing what happens in entities and 
provide very limited facilities for identity modelling. So far entities/objects have always been first 
class citizens when compared with identities/references. Although it is widely recognized that 
references provide very important services, they have always remained somewhere underground 
having the status of second class citizens. There were many attempts to study identification techniques 
from philosophical and conceptual points of view, and numerous rather specific techniques were 
proposed for solving identity-related problems. However, the problem of identity modelling has still 
secondary importance with respect to entity modelling. Indeed, objects possess structure and 
behaviour while references do not. Objects are armed with such powerful mechanisms as 
encapsulation, inheritance and polymorphism while references are deprived of all of these. Objects are 
at the focus of most system development approaches while references always remain in their shadow. 
Although references could be modelled manually on the basis of standard facilities, doing so is tricky, 
difficult and error prone because it is done by means of objects, i.e., by applying inappropriate means. 
The approach described in this paper aims to fill this asymmetry and disparity between objects and 
references by making references first class citizens with the same rights as objects.  

We discuss the problem of identity modelling in a narrower context of programming languages. In 
OOP it is assumed that references are primitive elements provided by the compiler taking into account 
services of the target run time environment. Objects in OOP are in the centre of the program design 
and therefore class – the main programming construct – is intended to model only objects. References 
play an auxiliary role of something that is necessary and cannot be completely avoided but what we 
do not want to see explicitly in our design. For example, let us assume that a variable stores a 
reference to a bank account object. This variable is then used to access this account balance using 
some its method. In OOP we are completely unaware of the reference format and the operations 
executed during object access. The compiler provides primitive (native) references and the 
programmer has an illusion of instant access to objects. In this case we can model only structure and 
behaviour of objects such as bank accounts while structure and behaviour of references is completely 
out of the scope of OOP.  

The main problem with this conventional approach is that frequently we need to define our own 
custom references with their own format and associated access procedures. In this case using universal 
standard references with built-in functionality might be a limiting factor. For example, creating and 
deleting many tiny objects is known to be a very inefficient procedure. Dealing with remote objects 
requires special references encoding information on their location and special access procedures based 
on some network protocol. Using persistent objects is also based on specific requirements to their 
identifiers and access rules. In all these cases it would be natural to develop a special subsystem which 
can take into account specific features of its objects. However, an important observation here is that 
such a subsystem is aimed at modelling how objects are represented and accessed rather than what are 
object’s structure and behaviour. In other words, we see that there exists functionality which is not 
associated with objects and hence it should be modelled somehow differently. Here again this problem 
can be solved using special features of operating system (like local heap), middleware (like CORBA 
or RMI), libraries (like Hibernate) or programming patterns (like proxy). However, our goal consists 
in developing mechanisms for reference modelling which would be as powerful as those for object 
modelling. By applying these mechanisms we could model arbitrary references with any format and 
functions. Just as object classes are developed for each concrete program depending on its design 
requirements, references also should be modelled for each concrete program reflecting its design 
goals. For example, we know that in the problem domain bank accounts are identified by their 
numbers. Therefore, ideally account objects in the program should be also represented by numbers. 
Yet, OOP forces us to use primitive references for any class of objects. Further, bank account objects 
might be known to be stored in a database where they can be accessed using some query language. 
However, we are not able to reflect this directly in our program code because in OOP all objects are 
accessed in one and the same way.  
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In this paper we propose a solution which is based on extending an object-oriented programming 
language by introducing new language constructs and mechanisms. The programmer then does not 
depend on the available environment and compiler with their standard object identification facilities. 
Rather, using the proposed approach it is possible to create internal custom containers with a virtual 
address system where all the objects will exist. In particular, we can develop references of arbitrary 
complexity including structure and functions. For example, references could contain account numbers 
instead of native references while objects could really reside in a database on a remote computer or 
anywhere in the world. At the same time we can still think of objects as being represented and 
accessed directly. For example, even if an account is represented by its number and resides in a 
database, we can get its current balance by applying one method. The underlying environment 
developed by the programmer will intercept this call and perform all the necessary intermediate 
actions transparently. Getting an account balance might mean using some special protocol involving 
also operations with some special database developed for this and only this bank. Thus references are 
interpreted as virtual addresses providing at the same time a possibility to bind them to real locations.  

Unfortunately, it turned out that the problem is not so simple. Although some mechanisms could be 
implemented using traditional existing techniques, such partial solutions make the whole picture more 
complex. One of the main problems is that functions of references and functions of objects have a 
cross-cutting nature and cannot be easily separated or mechanically combined. The structure of 
references and objects, and relationships between them are discussed in Section 2. In particular, in this 
section we postulate that any element has two sides or flavours, called identity and entity (Section 
2.1), and there are two fundamental relations among elements, called inclusion (Section 2.2) and 
substitution (Section 2.3). Both these relations are of crucial importance for understanding the 
proposed approach. Inclusion generalizes inheritance while substation is a completely new notion.  

Further in Section 3 we propose an approach to modelling elements as they are described in Section 2. 
This approach is based on using a new programming construct, called concept. Accordingly, the 
whole approach is referred to as concept-oriented programming (CoP). Concept consists of two 
classes, called reference class and objects class (Section 3.1). Instances of the reference class, called 
references, are passed-by-value and are intended to represent objects, which are instances of the object 
class passed-by-reference. Definition and properties of this construct are described in Section 3.2 
while Section 3.3 discusses how two constituents of one concept are connected using the mechanism 
of meta-transition implemented via substitution relation.  

Section 4 is devoted to discussing inclusion relation which generalizes inheritance and hence is of 
high importance for understanding distinguishing features of the described approach. In particular, this 
relation is used for defining so called complex references (Section 4.1) which are used to identify 
objects in a hierarchical space. The inclusion structure of elements in the program determines how 
they are accessed and this standard sequence of access is described in Section 4.2. In order to increase 
efficiency of access we propose a mechanism, called context stack, which is discussed in Section 4.3. 
In Section 4.4 we describe how elements (objects and references) are created and deleted.  

Since references are in the focus of our research, in Section 5 we propose a number of operations 
which make it easier to manipulate them in the program. In particular, Section 5.2 describes in details 
reference structure and parameters. Section 5.2 defines operations of left and right casting for 
references. And Section 5.3 discusses the mechanism of reference length control.  

An amazing feature of the proposed approach to programming is that it is backward compatible with 
OOP. Section 6 describes main differences of these two approaches discussing the mechanisms of 
inheritance (Section 6.1), polymorphism (Section 6.2) and life-cycle management (Section 6.3).  

An approach to programming described in this paper is not simply a technique but rather it turns into a 
programming paradigm. Why it is so and new principles of programming are described in Section 7. 
Section 8 is devoted to discussing related work and finally in Section 9 we make concluding remarks.  

2 Representation and Access  

2.1 Entities and Identities  
We assume that a system consists of elements or things. One element consists of two parts according 
to the following concept-oriented principle:  

Principle 1 [Duality]. Any element exists in two forms or flavours called entity and identity.  
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Thus elements or things exist in connected pairs rather than as independent parts. Formally, it is not 
possible to have one part without the other – they always co-exist. Identity is a unique identifier for a 
location at which the corresponding entity can be found. Thus identity is precisely what we normally 
mean by address, pointer, reference or name. Entity is what is characterized by some location and it is 
precisely what we normally mean by object or record.  

The main role of identity (but not the only one) is that it serves as a representative of its entity and 
provides access to it. If we need to access an entity, pass or store information to it then the only way 
consists in using its identity. Entities can be manipulated only through their identities, i.e., all 
operations are performed exclusively with identities. Such a separation of roles corresponds to Kant’s 
view expressed originally in his work “Critique of Pure Reason”. According to this view entity is a 
thing in itself or reality which is not observable in its original form and is radically unknowable. In 
contrast to the reality it represents, identity is a phenomenon observable directly in its original form. 
Thus the only way to get, pass or store information about any entity consists in using its identity 
which always stays between us and the entity.  

On the other hand, entities have one property that in great extent justifies their usage – they exist 
objectively without the necessity to have anything else. In other words, entities are precisely what we 
normally mean by objective reality which exists independently of any subject or observer. This reality 
consisting of entities is characterized by properties which can change in time. By getting or setting 
these properties we can read or write information which will then exist independently of us. So entity 
can be thought of as a persistent part of an element in contrast to identity which is thought of as a 
transient part. If we change an identity then this will be visible only for us and this change disappears 
along with us. If we modify an entity then this will be visible for anybody who has access to it by 
possessing its identity. Thus entities are persistent but cannot be directly accessed and therefore we 
use identities which are directly observable but do not retain their state outside the current scope. This 
difference is analogous to information stored in local variables and information stored in memory 
which however can be accessed only using some identities in local variables on the stack.  

If entities are not directly observable then how do we know whether some entity exists or not? The 
only way consists in using identities. This means that if we have an identity then we assume that the 
corresponding entity really exists (even if it does not). And if the identity is not available and cannot 
be restored then the corresponding entity is supposed to be non-existing (even if it really exists). Thus 
identities serve to represent the fact that the corresponding entity exists, i.e., they represent the fact of 
their existence. There is no other way to check if an entity exists except for getting somehow its 
identity.  

Identities and entities are defined in pairs but on the other hand they have to exist separately. In other 
words, identities and entities exist in two different worlds but are connected in pairs (Fig. 1). One of 
the most interesting properties is that we actually do not know how this association between the two 
parts of each pair is implemented. We manipulate identities which somehow guarantee that there will 
be some influence on the corresponding entities but how concretely an identity accesses its entity 
remains a magic. In other words, we do not know how the border between the world of identities and 
the world of entities is intersected. The moment when a process moves from one world to the dual one 
is referred to as meta-transition (we called it also turn-point in previous works).  

 

Entity 

Element  

co-exist 
Identity 

not available for direct
comprehension  

directly persivable  
meta-
transition 

Identity world  Entity world

 
Figure 1. Identity and entity are two sides of one element.  
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For example, we can store an address of some organization (identity) but the organization itself 
(entity) is a separate thing. Moreover, we cannot even precisely define what this organization is, 
except that it provides some services accessible through the available address. It can be a virtual 
organization or it may have real location in some building with human workers. For us it is important 
only that having an address we can access its services. Although this address is thought of as the 
organization location it is not necessary that this entity has a real location. Identity is a virtual address 
and hence this location is simply a convention used to distinguish entities.  

Another example of identity is a memory address in computer. Notice however that there may be 
several types of memory addresses like physical address and virtual address. In any case having such 
an address is enough to get some content which is thought of as residing at this location. In particular, 
the address provides a number of services and guarantees that if we store some content at this location 
then later we can retrieve this same value. An interesting thing is that the real location needs not to be 
a memory at all or at least we do not need to know where and how the entity (content) is stored. We 
manipulate only the memory address (identity) and rely on its intrinsic (and magical) capability to 
interact with the represented entity. Another very important property is that the memory content does 
not actually store information on its identity (its address in memory). In other words, nowhere in 
memory is stored that this cell has some address. It is some other mechanism that interprets this cell as 
having an address. In particular, there is no way for the programmer to change the memory cell 
address by changing the content of the identity or entity.  

In order to illustrate what is not an identity let us consider the mechanism of primary keys in the 
relational model of data. On one hand a primary key looks like an identity because we can use the 
selected columns to find the corresponding row. However, strictly speaking it is not so because the 
primary key is not separated from the row (entity) it belongs to. Thus primary key exists in the world 
of entities; it is part of an entity with special role. We simply declare that some part of the entity 
(primary key columns) will be used to store information on it which can be then used to find it. In 
contrast to identities, primary keys can be modified (just as other columns of the row) and hence we 
can change the location of the entity. As a consequence it is even not guaranteed that this entity can be 
found. Compare it with references in OOP or memory addresses which are not stored in the 
represented entity and cannot be changed as a property of this entity. Indeed, an object class does not 
have a field with the reference value and objects do not store their own references. Nevertheless it is 
guaranteed that this object reference will be able to represent it. Thus primary keys are not identities 
but can be viewed as an attempt to create identification means within the relation model. In this sense 
primary keys can be viewed as identifying properties. For identity it is important to be detached from 
its entity and exist separately from it.  

2.2 Inclusion Relation  
In the previous section we postulated that an element is a pair of one identity and one entity. Identities 
and entities exist separately in their own worlds and identities are used to represent and access entities. 
One identity is interpreted as a location or address of the entity. However, normally we manipulate 
many elements within some range of their possible identities. This set of similar elements is thought of 
as a space. For example, a set of possible memory addresses is a space. Identity of this element is one 
address and its entity is the content at this address. A set of all IP addresses is a space where one 
element is an IP address as identity and one computer as an entity.  

Such a grouping of similar elements in spaces is not simply a convenience method. We assume that 
elements cannot exist without a space, i.e., any element needs some space to exist. In other words, if 
we have an element (identity-entity pair) then it is necessary to specify some space it belongs to. Such 
an indication of the space for an element is important because it allows us to compare different 
elements. For example, a memory address cannot be compared with a postal address because they 
belong to different spaces. The relation between elements and the space is called inclusion, i.e., each 
element is included in some space and a space can include internal elements.  

Having spaces is convenient and important but the problem is that it is not clear how to interpret them. 
In order to overcome this problem we assume that spaces are normal elements consisting of one 
identity and one entity (Fig. 2). Thus we still can consider only elements (identity-entity pairs) by 
adding only inclusion relation among them. This is formulated as the next concept-oriented principle:  

Principle 2 [Inclusion]. Any element is included in some other element.  

Parent elements are thought of as spaces for their child elements.  
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Figure 2. Inclusion of elements in hierarchical space.  

 

It should be noted that by inclusion in this paper we mean physical inclusion which has to be 
distinguished from logical inclusion considered in the concept-oriented data model (CoM) [Sav05a, 
Sav05b, Sav06, Sav07a]. One important characteristic feature of physical inclusion is that child 
elements do not store any information on their parents such a reference or pointer. We say that a child 
simply exists in its parent as in some context. Having a parent is an intrinsic fundamental property of 
any element postulated in the above formulated principle rather than a property that can be assigned or 
changed. Elements are born within some parent context and then exist there for the whole life-time. 
They know their parent and can access it but they do not store any reference to it as a property. (For 
comparison, having a logical parent in CoM means referencing some element.) For example, block on 
disk does not store information that it belongs to some disk – it just exists in it as in its physical space. 
A record does not have any indication that it belongs to some table – it simply exists within this table. 
A star does not have any information on the galaxy it belongs to and so on.  

Just as any other element, a space has two constituents: an identity and an entity. The only difference 
is that spaces may have a number of child elements. If a space has no children then it is considered an 
ordinary element. For example, a city element has two constituents: city name (identity) and city itself 
(entity). Street and house also consist of two parts (identity and entity) which need to be always 
distinguished, i.e., street name is different from street object.  

We assume that no cycles exist in the inclusion relation structure which has the form of a tree with 
one root. For example, postal addresses start from one root which includes countries (say, country 
code as identity and country properties as entity) which in turn include cities and so on. The structure 
of the hierarchical space can be variable. For example, domain name system (DNS) consists of a 
sequence of computer names separated by dots where each next name identifies an element in the 
context of the previous one. For example, www.conceptoriented.com consists of three elements 
identified by “com”, “conceptoriented” and “www”.  

We said in the previous section that the main role of identity consists in representing entities and 
providing access to them. The role of inclusion relation consists in structuring the elements. This 
structure can be then used to easier identify the entities. In other words, instead of one big space of 
elements we get a number of smaller sub-spaces and the most interesting feature is that the spaces 
themselves are normal elements. One advantage of having such a hierarchical space is that local 
identities within one space can be smaller because they need less space to identify a smaller number of 
elements. For example, it is not necessary to specify a country if we send a letter within this same 
country.  

However, a disadvantage is that identities from different spaces may be equal and the representation is 
then not unique. In other words, one and the same identity is assigned to different entities and the only 
difference is that these elements exist in different spaces. For example, one street name can exist in 
different cities, one city name can exist in different countries and one memory address can exist on 
different computers. In order to distinguish such elements the parent identity has to be attached to this 
element identity. However, the same parent identity may also exist in different spaces and so on. Thus 
the full representation of an entity consists of all its parent identities and each element is context-
dependent. Such a sequence of identities where each next identity is included into the previous one is 
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referred to as a complex identity. The operation of attaching a child identity to its parent identity is 
called concatenation or extension. One constituent in a complex reference is referred to as an identity 
segment while the corresponding entity is referred to as an entity segment. Thus using complex 
identities in the hierarchical space we can unambiguously represent all the entities. For example, a city 
is fully represented by specifying its country name as the first segment and city name as the second 
segment.  

2.3 Substitution Relation  
In the previous section we described a phenomenon of hierarchical space where elements exist within 
other elements and such an inclusion is postulated as their intrinsic property. Element identity can be 
used to represent and access the corresponding entity in the context of the parent element. Thus it is 
important that any identity has a meaning (can be meaningfully interpreted) only in the context of its 
parent element and cannot be considered outside its context. In other words, we need to know the 
parent element in order to understand what this element means. In this section we focus on a different 
phenomenon which also allows us to determine the meaning of an element but in the other way. Both 
mechanisms then represent two sides of one thing and should be considered together.  

Let us consider a simple address space consisting of all computer names (without a hierarchy for 
simplicity). One name is an identity representing one entity – a computer. Using this name we can 
access this computer but we do not know how the connection from the identity to the entity is 
implemented. This addressing schema is simple and clear except for one subtle observation: we know 
that in addition to name each computer has also some IP address assigned to it which also can be used 
as its identity. Thus we have two identities for one and the same entity. We can represent and access 
any computer using its name or we can choose to access it using its IP address. The same situation 
exists in programming where one and the same object is represented by its primary key, by its Java 
reference, by its remote reference, by its memory handle or by its physical address.  

The second important observation is that different identities of one and the same entity are not 
arbitrary and are somehow connected. For example, computer name is connected with its IP address 
and Java reference of an object is connected with its memory handle which in turn is connected with 
the object physical memory address. This relation is referred to as substitution and the procedure for 
finding the substituted identity is referred to as resolution (Fig. 3). (Their dual analogues are inclusion 
and extension described in the previous section.) Thus we say that computer name substitutes for an 
IP address, a Java reference substitutes for some memory handle and a remote reference substitutes for 
a Java reference. Thus one and the same entity may have many identities which are connected by the 
substitution relation. We generalize these observations in the following concept-oriented principle:  

Principle 3 [Substitution] An element substitutes for some other element.  

Notice that substitution relation describes both identities and entities, i.e., an entity also has a 
substituted entity.  

 

 

substitution relation

Entity Identity 

Substituted element 

Entity Identity 

Entity Identity 

Substituting element 

 
Figure 3. Substitution of elements.  
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We will assume that substitution is not independent but rather is constrained by inclusion relation. In 
particular, we assume that an element cannot substitute for its child elements. More precisely, an 
element can substitute for only siblings of some of its parent. This property will be formulated more 
precisely later when types of elements will be introduced. Now it is important to understand that the 
role of substitution consists in providing a way to basic elements. For example, remote references are 
resolved to Java references which in turn are resolved to memory handles and so on. In this sense 
substitution is opposite to inclusion.  

The above formulated principle allows us to partially answer the question about the transition from the 
identity world to the entity world. Earlier we said that it is a magic and we do not know how identities 
get access to the entity world. It is still so but now we can reduce this procedure to more basic things. 
Namely, we say that an identity performs meta-transition into the entity world using the substituted 
identity. This means that it is the root identity that is responsible for all the interactions with the entity 
world. All other identities directly or indirectly substitute for the root identities and hence they are 
resolved into them when it is necessary to perform real access. How meta-transition is performed by 
the root identity is not known – it is considered its intrinsic or built-in ability.  

For example, if we have a computer name and want to get some information from it then the access 
procedure will resolve this name to the substituted IP address which will be then used for access. If we 
use Java reference for identifying our objects then each access will result in the reference resolution. 
This procedure will restore the object memory handle which will be used for access.  

Theoretically the resolution proceeds infinitely deeply by restoring more and more basic identities 
which are closer to the reality. Yet no one of them provides direct access to the reality (to the entity 
world). For example, memory handles are resolved into physical addresses which are then processed 
by the CPU which then communicates with the memory chip and so on. In practice, we choose some 
level as a basic one and do not go deeper. This level can be viewed as a base coordinate system. All 
other spaces and identities provide indirect representations for its coordinates. For example, we can 
choose memory addresses as a base coordinate system and then introduce indirect coordinates in the 
form of Java references. Or we can choose Java references as a base coordinate system and then 
introduce remote references for their substitution.  

Substitution relation allows us to introduce virtual identifiers which are not directly bound to the base 
coordinates. Such virtual identifiers bring a new level of indirection and hence flexibility. In 
particular, having a virtual identity of an element we can control its real coordinate in the base space. 
For example, we can change IP address of a computer and this allows us to reuse its name stored in 
different places.  

3 Concepts for Describing Entities and Identities  

3.1 Reference Class and Object Class  
In the previous section we assumed that elements consisting of one identity and one entity are 
organized into a hierarchy where each element has one parent and one substituted element. The 
question is then how can we describe structure and functions of identities and entities? One wide 
spread approach in computer programming consists in using classes for that purpose. Class fields 
allow us to describe structure while class methods describe its behaviour. What is new in our approach 
is that we need two sorts of classes for describing two parts of an element. In other words, we need 
one class for describing structure and functions of identities and one class for describing that of 
entities. Since further in the paper we will focus mostly on computer programming issues, we change 
our terms to more specific. Namely, instead of the term identity we will use the term reference and 
instead of the term entity we will use the term object. Thus our next assumption is that an element of a 
computer program consists of one reference and one object which are modelled by one reference class 
and one object class, respectively.  

Object classes are equivalent to normal classes as they are defined and used in OOP. Instances of the 
object class are referred to as objects. Thus if no reference classes are defined then we get an object-
oriented program which consists of objects, i.e., its structure and functionality is concentrated in 
objects. Reference classes are used to describe object representatives and their instances are referred 
to as references. In this case a program consists of two types of elements – objects and references – 
and the program functionality is distributed among them. Thus references are as important as objects 
and in some cases can even account for most of the program complexity.  
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For example, let us assume that we need to model bank accounts. An account consists of its identity 
and its entity which are modelled by two classes. If an account is identified by its number having 
balance as a state then it can be described using two classes as shown in Listing 1.  

 

Listing 1. Reference class and object class defined separately  

01  reference AccountReference { // Reference class  
02    String accNo; // Identifying field  
03    ... // Other members of the reference class  
04  }  
05   
06  object AccountObject { // Object class  
07    double balance; // State field  
08    ... // Other members of the object class  
09  }  

 

Here we use keyword ‘reference’ to mark a class as a reference class and keyword ‘object’ to mark a 
class as an object class. We might also add other members to these classes, say, opening date field or a 
method for getting balance. These two classes have their own names and we can produce their 
individual instances in the source code. The main goal of introducing reference classes consists in 
using custom references for representing objects rather than only primitive references. For example, if 
we want to create a new account object having custom identifier then we can specify two class names. 
Using the style of the Transframe programming language [Sha] this can be written as follows:  

AccountObject account of AccountReference;  

This declaration means that variable account will contain reference of class AccountReference 
which represents an object of class AccountObject. Using the style of C++ smart pointers [Str91] 
the same can be written as follows:  

AccountReference<AccountObject> account(new AccountObject);  

Here again we declare a variable which contains a reference of one class pointing to an object of 
another class. In any case it is important that the two classes are defined independently and we need to 
specify both of them when declaring new variables, parameters or return values. In particular, one 
reference type can be used for representing different objects and one object can be represented by 
many different reference types.  

3.2 Concept Definition  
Using separately reference classes and object classes is possible but is not very convenient. In this 
case references and objects are defined separately and there is no connection between them because 
these classes are paired only when they are used for declaring a variable. Thus the classes describing 
one element cannot use each other.  

To overcome this problem we propose to use a new programming construct, called concept, which 
combines two classes: one reference class for describing identity and one object class for describing 
entity. The reference class and the object class loose their independence and can exist only as part of 
one concept. If we need to have only a reference class then it can be defined as a concept with the 
empty object class. And if we need to have only an object class then it can be defined as a concept 
with the empty reference class. The latter is equivalent to normal classes.  

 

Listing 2. An example of concept.  

01  concept Account // One name for the pair of two classes  
02    reference { // Reference class of the concept  
03      String accNo;  
04      ... // Other members of the reference class  
05    }  
06    object { // Object class of the concept  
07      double balance;  
08      ... // Other members of the object class  
09    }  
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For example, instead of defining separately one account class and one account reference class (Listing 
1) we now need to define one concept which contains the both (Listing 2). It will be assumed that 
concepts start from the keyword ‘concept’ followed by the concept name. Then the reference class is 
defined using keyword ‘reference’ and the object class is defined using keyword ‘object’. The two 
classes are described as usual by defining their members.  

Since reference classes and object classes cannot be defined independently, they cannot be used 
separately in the program. Instead, we need to use concepts only, i.e., named pairs of one reference 
class and one object class. An approach where concepts are used instead of classes for declaring types 
is referred to as concept-oriented programming (CoP). Thus concepts in CoP are used where classes 
are used in OOP when declaring a type of variables, fields, parameters, return values etc. For example, 
let us consider the following code:  

Account account = getAccount();  
Person person = account.getOwner();  
Address address = person.getAddress();  

Strictly speaking, it is not possible to determine if it is an OOP program or CoP program from this 
fragment because we do not know how its types (Account, Person, Address) are defined. If they 
are defined as normal classes then it is an OOP program. Otherwise, if they are defined as concepts 
(for example, as concept Account in Listing 2) then it is a CoP program.  

So what actually changes when we use concepts instead of classes? The main change is that variables 
declared using concepts contain custom references in the format defined by the concept reference 
class. In contrast, if a variable is defined using a class then it contains a primitive reference chosen by 
the compiler. Thus changing concept definition we can effectively influence what is actually stored in 
the variables in the program. The main goal of such custom references consists in controlling how 
objects are represented and accessed (although there are other uses).  

For example, if Account is a concept defined in Listing 2 then variable account will store account 
number as its content. This account number is supposed to indirectly represent some account object 
and it is passed to method parameters, stored in object fields or returned from methods as if it were 
normal (primitive) object reference. Analogically, if Person is a concept then variable person 
would store passport number and birth date which both indirectly represent the owner of the account.  

 

Listing 3. Precedence of reference methods.  

01  concept Account  
02    reference {  
03      String accNo;  
04      double getBalance() { // Reference method  
05        print("=== Account::getBalance reference method");  
06        return 0;  
07      } 
08    }  
09    object {  
10      double balance;  
11      double getBalance() { // Object method  
12        print("--- Account::getBalance object method");  
13        return balance;  
14      } 
15    }  
16   
17  Account account = getAccount();  
18  double balance = account.getBalance();  
19   
20  $ === Account::getBalance reference method  

 

Two classes constituting a concept can provide their own members. In particular, the reference class 
and the object class can define one and the same method (a method with the same signature). Such 
methods defined in both classes are referred to as dual methods and play very important role in CoP. 
The definition provided in the reference class is called a reference method while the definition 
provided in the object class is called an object method. (Theoretically it is more convenient to assume 
that both definitions are always available and if one of them is absent then some default 
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implementation exists.) Yet in the source code we use methods as usual with no indication what kind 
of method has to be used. For example, if method getBalance is defined in both the reference class 
and the object class of concept Account and we apply it to variable account of this concept 
(Listing 3, line 18) then what definition has to be actually executed?  

In order to resolve this ambiguity we use the following principle:  

Principle 4 [Dual methods]. Reference methods of a concept have precedence over its object 
methods.  

In other words, applying a method to a variable means executing the reference method rather than the 
object method. For example, the statement account.getBalance() will use the definition 
provided in the reference class of concept Account (Listing 3). This means that in the source code 
we can act only on what is stored in variables by value, i.e., we work with references but assume that 
they should affect the represented objects. By calling method getBalance we want to access the 
account object however this operation cannot be executed directly and the reference stored in the 
variable intercepts this call and executes all the necessary intermediate actions.  

This principle means that references intercept any access to the represented object. It is quite natural 
because the object method cannot be executed because of the absence of its primitive reference. 
Indeed, we cannot apply method getBalance to simply an account number stored as a string and 
hence some intervention is needed. The reference is then the only element that knows where the object 
is located and how to access it, particularly, how to call its methods. References protect objects from 
direct access from outside and there is no way to bypass a reference if it wants to control access to the 
represented object. Notice that the programmer has still the illusion of working with the object directly 
because the interception is performed transparently. If an element is associated with a space border 
then any access request is processed in the reference on one side and only after that it can cross the 
border (Fig. 4). In CoP, methods are thought of as processing channels or tunnels where access 
requests are processed. In contrast, the standard approach is that methods are thought of as complex 
operations defined via other operations. In CoP, if we specify a method then it means the name of the 
path this request needs to follow when travelling to the target object and intersecting intermediate 
borders.  

 

 

Methods are 
intermediate 

processing points 
rather than end points

Internal objects are 
accessible from the 
reference  

getBalance

Processing of
passing access
requests on the

border 

getBalance 

Reference represents a border which intercepts all access requests

account 
reference 

'this'  

Reference 
world  

Object 
world  

account 
object  
. (dot) 

(1) (2) (3) (4) 

Meta-transition  
Figure 4. Reference intercepts accesses to the object.  

 

Once a reference method got control it can decide how to proceed. In particular, it may call object 
methods including the dual object method, i.e., its version defined in the object class. Notice that 
accessing an object is only possible if we are in its reference. As we already noticed, if a reference 
method has not been defined then it is simply assumed that there is some (natural) default 
implementation. Thus from a reference method we can call either this reference methods or this object 
methods. In order to distinguish them a programming language needs some syntactic means. We will 
use a simple convention that this reference is denoted by the keyword ‘this’ while this object is 
denoted by dot. For example, this.getBalance() is a call of the reference method while 
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.getBalance() is a call of the object method (which can be called only from within some 
reference method).  

Listing 4 provides an example where a reference method calls the dual method and the sequence of 
access is shown in Fig. 4. If such method is applied to an account variable then first the reference 
intercepts this call and executes the necessary intermediate operations (step 1 in Fig. 4). Then it calls 
the dual method using dot to indicate that it is an object method (step 2). At this point the process 
performs meta-transition and moves to the object world (step 3). And finally the object method 
executes the necessary operations with this object and returns some result (step 4). The output of this 
method call is shown at the end of Listing 4.  

 

Listing 4. Call of object method.  

01  concept ount   Acc
02    reference {  
03      String accNo;  
04      double getBalance() {  
05        print("=> Account::getBalance reference method");  
06        balance = .getBalance(); // Object method is invoked  
07        print("<= Account::getBalance reference method");  
08        return balance;  
09      } 
10    }  
11    object {  
12      double balance;  
13      double getBalance() {  
14        print("-> Account::getBalance object method");  
15        return balance;  
16        print("<- Account::getBalance object method");  
17      } 
18    }  
19   
20  Account account = getAccount();  
21  double balance = account.getBalance();  
22   
23  $ => Account::getBalance reference method  
24  $ -> Account::getBalance object method  
25  $ <- Account::getBalance object method  
26  $ <= Account::getBalance reference method  

 

3.3 Meta-Transition  
Program objects represented by custom references can be manipulated as if they were normal directly 
accessible objects, i.e., in CoP we retain the complete illusion of direct instant access on custom 
references. For example, we assume that even if account objects are represented by their numbers we 
still can call their methods as if they were represented by primitive references. In particular, we 
assumed in the previous section that reference methods can access the corresponding object methods. 
For example, we can call getBalance object method from within getBalance reference method:  

reference {  
  ...  
  double getBalance() { // Reference method  
    return .getBalance(); // Object method call  
  } 
  ...  
}  

However, it is still not clear how can we call object methods if the object itself is not available 
because its primitive reference is absent. Indeed, all variables representing accounts store only some 
account number and it may well happen that the object is not in memory at all and its primitive 
reference does not exist yet. Account numbers are virtual addresses which cannot be directly used for 
access and need to be somehow converted into a primitive reference. This means that we need some 
procedure for intersecting the space border separating two worlds, i.e., a procedure for meta-transition 
(between steps 2 and 3 in Fig. 4).  
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In order to provide a mechanism for meta-transition we propose to use concept methods which are 
intended to implement this border intersection logic and are referred to as special methods. In other 
words, only special methods know how to intersect this border described by this concept. There can 
be different special methods with different purposes but in this section we describe a method which is 
intended for normal object access and is called a continuation method. Thus the continuation method 
is used whenever it is necessary to cross the border between the two worlds with the purpose of 
accessing the object. (Other special methods intended for life-cycle management are described in 
Section 4.4) All other methods of concepts are executed as if the border would be completely 
transparent as described in the previous section.  

Meta-transition starts in the reference and ends in the corresponding object, i.e., on the other side of 
the border. Thus it consists of two parts: one is defined in the reference class and the other is defined 
in the object class. Then the question is how concretely meta-transition is implemented in the 
continuation method? The idea of the solution is that it resolves the current reference by restoring the 
substituted reference and then uses its continuation method for meta-transition. It is precisely the point 
in the program execution where the substituted reference comes in play. It is interesting that the 
continuation method does not actually perform meta-transition but rather reduces this task to the same 
method of the substituted reference. The resolved reference in turn finds its own substituted reference 
and recursively calls its continuation method. This process continues till the primitive reference which 
is now responsible for real meta-transition. However, we never know how it happens because this 
level is not controlled by the programmer. When the border is intersected the process finds itself in the 
object world. At this point the dual part of the continuation method starts. This method is intended for 
preparation of this object for access.  

The sequence of access using the dual continuation methods is shown in Fig. 5. Notice that in 
comparison with Fig. 4 it has two continuation methods around the border and between 
getBalance methods. If we apply a method to a reference then the reference method will be 
executed (step 1). If it calls some object method or otherwise accesses the object then meta-transition 
is executed implicitly using the continuation methods. First, the reference continuation method 
resolves this reference (step 2) into a primitive reference which again is used for continuation. At this 
moment the border is interested (step 3). Then the object continuation method starts automatically 
from which then the target object method is called (step 4).  

 

 

Meta-transition 

 
 

getBalance() 

account reference

 
getBalance() 

account object  

Reference 
world  

Object 
world  

 
continue() 

 
continue() (1) (2) (3) (4)

reference continuation object continuation  

 
Figure 5. Meta-transition.  

 

Listing 5 gives an example of the continuation methods which demonstrates the sequence of object 
access and meta-transition. The continuation method is named continue and is defined in both the 
reference class and the object class. The main role of the reference continuation method consists in 
converting this reference into the substituted primitive reference and then delegating to it the job of 
meta-transition by recursively calling its continuation method. In this example we assume that the 
primitive reference is stored in one of the reference class fields (line 4). If this field is not initialized 
then we assume that the object state is in some secondary storage and needs to be loaded in memory 
(line 9). For example, here we might load the state of the account from a database using the account 
number as a primary key. When the substituted primitive reference is available we can really cross the 
border and go to the object by applying to it recursively the continuation method (line 11). This line is 
very important because it is rather typical style for the concept-oriented programming when no 
method is called but the necessary actions are executed implicitly. In this case we simply say that we 
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want to continue and the compiler then implements the logic of meta-transition at the level of 
primitive references. Thus line 11 is where the object continuation method (line 24) starts. This 
method is guaranteed to be executed before any access and its main role consists in preparing this 
object for access. In this example we simply set a flag (line 26) which is a signal for other processes 
that this object is being accessed. When the object is ready for access we again continue (line 27) but 
in this case the compiler interprets this method call as a point where the target method called explicitly 
by the programmer can be executed. If the programmer called getBalance then it will start at this 
point. When the target method or any other access request finishes, the process returns to the object 
continuation method where the access flag is reset (line 28). After that it returns to the reference 
continuation method where the state of the object can be stored back into the database if necessary 
(line 15). And finally the process returns to the reference part of the target method such as 
getBalance. Thus the sequence starts from the explicitly called reference method which wraps 
implicitly called continuation methods (reference and object continuation) which wrap the object 
method.  

 

Listing 5. Continuation method.  

01 concept Account  
02   reference { 
03     String accNo;  
04     Root accObject;  
05  
06     void continue() {  
07       // Resolve account number start access  
08       if(accObject == null)  
09         accObject = loadAccount(accNo);  
10  
11       accObject.continue(); // Proceed to the object (3)  
12  
13       // Clean up and finish access  
14       if( lowMemory() ) {  
15         saveAccount(accNo, accObject);  
16         accObject = null;  
17       }  
18     }  
19     ...  
20   }  
21   object {  
22     double balance;  
23     boolean isAccessed;  
24     void continue() {  
25       // Enter object and prepare it for access  
26       isAccessed = true;  
27       continue(); // Proceed to the method (4)  
28       isAccessed = false;  
29       // Clean up and finish access  
30     }  
31     ...  
32   }  

 

4 Concept Inclusion  

4.1 Complex References  
In the previous section we assumed that one concept describes one space border and discussed how 
this border between identity and entity is crossed using the continuation method. Then the question is 
how can we describe a nested structure of spaces and how objects are represented and accessed in this 
structure?  

To model the nested structure of spaces each concept specifies a parent concept which describes the 
parent space. This relation is called an inclusion relation and is denoted by ‘<’ (less than). If concept B 
is included in A then it is written as B<A (B is less than A). This notation is used in the theory of 
ordered sets, including formal concept analysis (FCA) and ‘less than’ sign relates to the number of 

 14



elements in the sets. Thus the parent concept is supposed to have more elements than its child 
concepts if they are interpreted as sets. The parent concept is also called a super-concept or base 
concept while the child concept is called sub-concept or extension concept. The inclusion relation can 
be also interpreted as a specific-general relation. In this case we say that parent concepts are more 
general than their child concepts, which are more specific then their parent concepts.  

Each concept has some position in the inclusion hierarchy where it has one parent and a number of 
child concepts. It is assumed that this hierarchy has one root concept with the name Root. The root 
concept describes the outermost space which directly or indirectly contains all elements and is 
interpreted as the most general concept: RootCC <∀   , . All events in the program happen within this 
space and hence it can be viewed as the program itself. Normally this concept is provided by the 
compiler.  

In source code, concept inclusion will be specified using keyword ‘in’ followed by the parent concept 
name. For example, if concept SavingsAccount is included in concept Account then we write it 
as follows:  

concept SavingsAccount in Account  
  reference { ... }  
  object { ... }  

Informally this means that savings accounts will be located within accounts. It is important that one 
account may include many savings accounts as well as other more specific account types. If no parent 
concept is specified then by default it is assumed to be the root concept.  

Earlier we assumed that a variable stores a reference in the format defined in its concept. For example, 
a variable of Account concept will contain account number which is a field in this concept reference 
class. However, in the case a concept has a parent concept then its variables will contain also all the 
parent references. For example, a variable of concept SavingsAccount will contain two 
references: one defined in SavingsAccount and the second defined in the reference class of 
Account concept (Fig. 6). A savings account is then indirectly represented by two numbers: the 
main account number and the sub-account number identifying its object within the main account.  

Inclusion relation allows us to define several new notions. A construct consisting of a sequence of 
references where each next reference is included in the previous one is referred to as a complex 
reference. Each constituent of the complex reference is referred to as a reference segment. A complex 
reference which starts from the root segment is called a global reference (or fully qualified reference). 
Otherwise, if a reference starts from some internal concept then it is called a local reference.  

 

 

accNo  

concept Account  
  reference {  
    String accNo;  
  } 
  object { ... } 
 
concept SavingsAccount in Account 
  reference {  
    String subAccNo;  
  } 
  object { ... } 

subAccNo  

SavingsAccount savingsAccount = new SavingsAccount();  
 
Account account = new Account();  

 

 

  
Figure 6. Structure of complex reference.  

 

An object represented by a reference segment is referred to as an object segment. Thus the reference 
segment and the object segment are instances of the reference class and the object class of one 
concept. A number of objects represented by segments of a complex reference are referred to as a 
complex object.  
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An important property of complex references is that their segments are stored and passed together as 
one data structure. It is analogous to how objects in OOP are normally stored in one chunk of memory 
one segment next to the other (side-by-side). So inclusion relation for reference class can be thought 
of as a normal inheritance. A difference from objects in OOP is that references need not to start from 
the root segment because local references may start from any concept. However, by default all 
variables are supposed to contain fully qualified references with all segments starting from the root 
and ending with the concept which is a type of this variable. For example, if concept C is included in 
B which is included in A then a reference to C will consist of three segments with the format defined 
by the reference classes of concepts A, B and C (Fig. 7). These three reference segment represent three 
object segments which constitute one complex object. However, the three object constituents need not 
to reside next to each other.  

 

reference A (high) 

C  var = new C() 
Complex reference  
(segments together)

reference B  

reference C (low) 

this 

super

sub 

concept A  
 
concept B in A ... 
 
concept C in B ... 

object A (high)  

object B  

object C (low)  

Complex object  
(segments separately)    

Figure 7. Complex reference and complex object.  

 

Concept instances exist in a hierarchy at run-time and this hierarchy is modelled by concept inclusion 
relation. Any element has one parent element and a number of child elements. In order to distinguish 
and access these elements we will use three keywords: ‘this’ refers to the current element, ‘super’ 
refers to the parent element and ‘sub’ refers to the child element (if any).  

4.2 Sequence of Access  
Earlier we postulated that reference intercepts all accesses to the represented object and object 
members can be accessed only from within some reference method. However, if a variable contains 
complex reference then each its segment can implement the same method. For example, both concepts 
Account and SavingsAccount can implement method getBalance in their reference class. 
Then the question is which of these two methods has to be executed if this method is applied to an 
instance of concept SavingsAccount? In other words, the problem is to determine which reference 
segment should process all incoming access requests.  

In order to resolve this ambiguity we use the following principle:  

Principle 5 [Reference method overriding]. Parent reference methods have precedence over 
(override) child reference methods.  

In other words, parent reference methods of higher segments intercept all accesses to the child 
reference methods of lower segments. In our example, getBalance of Account reference will be 
called first and only after that it is possible to call getBalance of SavingsAccount reference.  

This principle is quite natural and simply reflects the fact that any attempt to enter a space must be 
intercepted at the border (Fig. 8, left). Higher segments represent external spaces while lower 
segments represent internal spaces. In order to reach an element we always start from the external 
space and then proceed by entering narrower scopes (if we are not already inside). At each 
intermediate border the request is intercepted by the method having the same signature and the 
programmer can perform the necessary actions. (Of course, if such a processing is not needed then the 
interception can be optimized, i.e., if the reference class of the parent concept does not define the 
method then it will not be intercepted and then the child method can be called directly.) Such a 
sequence of access effectively means that the only possibility to access an object consists in 
intersecting all the intermediate borders that separate it from the outside world.  
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Figure 8. Duality of method overriding.  

 

An important application of this principle is the mechanism of method overriding. However, the 
direction of such overriding is opposite to the conventional one (as used in OOP), which means that 
base reference methods override child reference methods. (Notice that this principle belongs to 
reference methods only.) It is a dual form of the mechanism of method overriding in OOP, which 
allows a sub-class to provide a more specific implementation of a method defined in its super-class.  

Using this principle it is always possible to override any reference method by defining the same 
method in the reference class of its base concept. Thus parent reference methods protect child 
reference method from direct use from outside. It is quite natural principle because it allows any 
border to control incoming processes. For example, a live cell has a border which checks and controls 
anything that tries to come in. The existence of the own border is actually a generic property of any 
system including physical, live and social ones. And it is quite natural that if a system is included into 
another system than the only way to access it from outside consists in intersecting the parent system 
border. In this sense reference methods can be thought of as incoming methods for the space described 
by this concept. The mechanism of reference methods and the inverse principle of overriding allow us 
to support this approach in programming languages. Such a principle of overriding is analogous to 
that used in the Beta programming language [Kri83, Kri87, Kri89] and the mechanism of inner 
methods [Gol04].  

Listing 6 provides an example illustrating the mechanism of reference method overriding. A variable 
contains a complex reference of concept C which is included in concept B which is in turn included in 
concept A. Reference classes of all the tree concepts define method myMethod which simply calls 
the same method of the child reference using keyword ‘sub’ and prints two diagnostic messages 
around this statement. (It is assumed that if there is not child then access on ‘sub’ keyword is 
equivalent to no-op.) If now we apply this method to the variable of concept C then it will print the 
output shown in lines 37-42. Here we see that any method call is wrapped into a sequence of reference 
methods starting from the first parent and ending with the last child.  

The border between reference and object can be crossed at any moment using the mechanism of meta-
transition implemented in the continuation method as described in Section 3.3. Now let us assume that 
after meta-transition the process has found itself in the object world in some object method. Here we 
can call object methods or read/write object fields as usual. However, object methods might have been 
defined in different concepts (in their object classes). In this case there is some ambiguity concerning 
what definition of the called method to use for execution. This is actually the same question that has 
been asked in the beginning of this section for reference methods. However, the answer has the dual 
form. Namely, for object methods we adapt the conventional OOP principle with the normal direction 
of access (Fig. 8, right):  

Principle 6 [Object method overriding]. Child object methods have precedence over 
(override) parent object methods.  

If we call some object method which is implemented in all object classes in the concept inclusion 
hierarchy then the compiler will use the definition provided by this object class (we say, that this 
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method overrides its parent methods). After that this method can continue by calling its parent 
methods using keyword ‘super’. Thus child object methods protect parent object methods from direct 
use from inside. Compare it with the role of reference methods which protect the space from outside. 
Informally this means that if we need some service or support from an object then the most specific 
one will be provided first while more general services cannot be accessed directly by internal objects.  

 

Listing 6. Reference method overriding.  

01  concept A  
02    reference {  
03      void myMethod() {  
04        print("=> A: enter space");  
05        sub.myMethod(); // Go inside  
06        print("<= A: exit space");  
07      }  
08      ...  
09    } 
10    object { ... }  
11     
12  concept B in A  
13    reference {  
14      void myMethod() {  
15        print("  => B: enter space");  
16        sub.myMethod();// Go inside  
17        print("  <= B: exit space");  
18      }  
19      ...  
20    } 
21    object { ... }  
22     
23  concept C in B  
24    reference {  
25      void myMethod() {  
26        print("    => C: enter space");  
27        sub.myMethod();// Go inside  
28        print("    <= C: exit space");  
29      }  
30      ...  
31    } 
32    object { ... }  
33     
34  C myVar = new C();  
35  myVar.myMethod();  
36   
37  $ => A: enter space  
38  $   => B: enter space  
39  $     => C: enter space  
40  $     <= C: exit space  
41  $   <= B: exit space  
42  $ <= A: exit space  

 

An example shown in Listing 7 demonstrates the sequence of access on object methods and the logic 
of object method overriding. In fact, this program can be produced almost mechanically from the 
program in Listing 6 by moving method definitions from the reference classes to the object classes 
and using ‘super’ instead of ‘sub’. We also assume that if no reference method has been defined then 
its default implementation is to pass control to the child (to more specific element) as shown in the 
previous example. And if it is the last segment with no child then meta-transition is performed and the 
object method is called. If method myMethod will be applied to a variable of concept C then it will 
produce the output shown in lines 37-42.  
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Listing 7. Object method overriding.  

01  concept A  
02    reference { ... }  
03    object {  
04      void myMethod() {  
05        print("-> A: enter service");  
06        super.myMethod(); // Go deeper  
07        print("<- A: exit service");  
08      }  
09      ...  
10    } 
11     
12  concept B in A  
13    reference { ... }  
14    object {  
15      void myMethod() {  
16        print("  -> B: enter service");  
17        super.myMethod();// Go deeper  
18        print("  <- B: exit service");  
19      }  
20      ...  
21    } 
22     
23  concept in B   C 
24    reference { ... }  
25    object {  
26      void myMethod() {  
27        print("    -> C: enter service");  
28        super.myMethod();// Go deeper  
29        print("    <- C: exit service");  
30      }  
31      ...  
32    } 
33     
34  C myVar = new C();  
35  myVar.myMethod();  
36   
37  $     -> C: enter service  
38  $   -> B: enter service  
39  $ -> A: enter service  
40  $ <- A: exit service  
41  $   <- B: exit service  
42  $     <- C: exit service  

 

If we combine these two examples (Listing 6 and 7) then the following output will be produced:  
$ => A: enter space  
$   => B: enter space  
$     => C: enter space  
$     -> C: enter service  
$   -> B: enter service  
$ -> A: enter service  
$ <- A: exit service  
$   <- B: exit service  
$     <- C: exit service 
$     <= C: exit space  
$   <= B: exit space  
$ <= A: exit space 

According to these two principles any process enters a space via some reference method and then goes 
down along the inclusion hierarchy to more specific reference segments (Fig. 8, left). Then the process 
switches to the object world where it changes the direction and goes up to more general object 
segments (Fig. 8, right). So here it is important to understand that changing the current world 
(between object world and reference world shown as left and right parts in Fig. 8) entails change of 
the principle of method overriding and other mechanisms to the dual version. Thus the role and 
properties of reference methods and object methods are significantly different within inclusion 
hierarchy. Reference methods are used to enter a scope, i.e., they are executed when an access request 
needs to come into the space. Object methods are viewed as services intended to be used by internal 
elements which are already in this space. Actually it is analogous to the natural sequence of access 
used in real systems and organizations. For example, to get a service from some organization it is 
necessary to enter its scope and then from inside we can use its internal services.  
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Diagram shown in Fig. 9 is an alternative view of the generic sequence of access described in this 
section. Here reference world is shown in the upper part while object world is shown in the lower part. 
The upper part is what we directly manipulate in the program, for example, by creating a reference of 
concept C consisting of three segments. The three object segments represented by this reference exist 
in the object world and they can be accessed only using meta-transition (the horizontal line in the 
middle) implemented in the continuation method (see Section 3.3). Notice that meta-transition can be 
performed from any reference, i.e., at any intermediate border. However, in this example we assume 
that the process goes down till the last segment where it switches to the object world and then 
continues its execution via object methods. The access always proceeds in the downward direction 
however in the middle it changes its semantics.  

 

 

super.myMethod(); 

super.myMethod(); 

super.myMethod(); 

myMethod(); 

myVar.myMethod(); 

reference A (high) 

reference B 

reference C (low) 

sub.myMethod()

sub.myMethod()

External space 

C myVar = new C();  

object C  

object B  

object A 

meta-transition 
continue()  

continue() 

Complex 
object 

Complex 
reference

 
Figure 9. Generic sequence of access.  

4.3 Context Stack  
Let us assume that there is a complex reference which is used to execute some method of the 
represented object. This target object method as well as intermediate methods executed during access 
can call methods of the parent objects using keyword ‘super’ in the same way as it is done in OOP. 
For example, a method of concept SavingsAccount could call methods of its base concept 
Account:  

concept SavingsAccount in Account  
  reference { ... }  
  object {  
    void myMethod() {  
      Person owner = super.getOwner();  
      ...  
      double limit = super.getCreditLimit();  
      ...  
      bool isLocked = super.isLocked();  
      ...  
    } 
  }  
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Formally, each access to any object can be performed only via its reference. If we access a parent 
object then it is represented by a parent segment of the current complex reference and hence this 
segment has to be resolved for each such method call. In the above example, we would need three 
resolutions of the parent reference segment for each of these method calls. According to this approach 
one access requires one reference resolution and after the access is finished the result of the resolution 
is lost. Although in many cases such as access of parent object in the above example we know that the 
result of resolution will be the same, the continuation method will still be executed. If there is many 
parent method calls and field read/write operations then performance of method execution can be 
rather low because it requires multiple repeated resolutions of the same references even if they are 
known to be the same.  

Such an approach is not only inefficient but is also not natural. It is analogous to the situation where 
we would need to exit and enter again a building in order to contact several persons in it for different 
questions. The natural approach would be to enter the building and not to exit before we finish all the 
necessary actions in it. In other words, in order to execute several operations in some space, its border 
has to be crossed (resolved) only once and after that the object representing this border and internal 
objects should be accessible directly without resolution. In the case of a complex reference this means 
that all its segments have to be resolved in advance and the result of the resolution stored somewhere 
for future use. After that all the intermediate objects can be accessed directly as many times as needed 
using the saved primitive references. Thus reference segments are resolved before real access takes 
place and the result of the resolution is stored in a special data structure called context stack (Fig. 10). 
The resolution sequence starts from the first (high) segment and then proceeds to the next segments 
ending with the last (low) segment. The result of each resolution is pushed on the context stack which 
grows as each next segment is resolved.  

For example, let us assume that an object is represented by a complex reference consisting of three 
segments of concepts A, B in A, and C in B. Initially, just before the access procedure starts, context 
stack is empty. When the first segment A is resolved by means of its continuation method it contains a 
primitive reference to the first object segment of concept A. Since this moment this object is directly 
accessible. The result of resolving the second segment B is pushed on top of the context stack on the 
second step, which now contains two primitive references and so on till the last segment. Finally, the 
number of elements on it is equal to the number of segments in the complex reference being resolved 
(3 in this example). The top of the context stack is a direct reference to the target object of concept C.  

 

myVar.continue(); 

reference A (high) 

reference B 

reference C (low) 

sub.continue() 

sub.continue() 

sub.continue() 

Context stack  

C myVar = new C(); 

START  

END 

object A  object B  object C  

o.continue() 

 
Figure 10. Complex reference resolution and context stack.  

 

Let us consider how this sequence of resolution is implemented by continuation methods of concepts 
in an inclusion hierarchy. The main role of continuation method consists in restoring the primitive 
reference substituted by this reference. Then it simply passes control to the primitive reference and the 
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process continues on the other side of the border in object continuation method. At this moment the 
resolved reference is pushed on the stack. However, if there are child objects then they also have to be 
resolved and hence continuation method has to call them. For example, let us assume that parent 
concept Account has one child concept SavingsAccount as shown in Listing 8. Continuation 
method of concept Account resolves its own account number into a primitive reference (line 7) and 
then passes control further (line 8). Here the mapping from account numbers to objects is stored in a 
global variable (line 1). Finally reference continuation method calls its child continuation method (line 
9) which also has to resolve its reference segment and prepare object for access. If it is 
SavingsAccount then its continuation method resolves sub-account number (line 23) but in this 
case it uses its parent object for storing the mapping from sub-accounts to objects. Then as usual 
control is passed to the primitive reference (line 24) and finally this method gives opportunity to a 
possible child object to make appropriate operations (line 25).  

 

Listing 8. Hierarchical access and context stack.  

01 static Map map = new Map();  
02 concept Account  
03   reference {  
04     String accNo;  
05     void continue() {  
06       print("=> Account: Resolve"); 
07       Object o = map.get(this.accNo);  
08       o.continue();  
09       sub.continue();  
10       print("<= Account: Resolve"); 
11     }  
12   }  
13   object {  
14     double balance;  
15     Map map = new Map();  
16   }  
17    
18 concept SavingsAccount in Account  
19   reference {  
20     String subAccNo;  
21     void continue() {  
22       print("=> SavingsAccount: Resolve"); 
23       Object o = super.map.get(this.subAccNo);  
24       o.continue();  
25       sub.continue();  
26       print("<=SavingsAccount: Resolve"); 
27     }  
28   }  
29   object {  
30     double balance;  
31     Map map = new Map();  
32   }  

 

The most important property of this mechanism is that parent objects are directly accessible from their 
child objects and need not to be resolved. So each occurrence of keyword ‘super’ in code means direct 
access using the primitive reference from the context stack rather than new resolution via continuation 
method. Since normally concept functionality is based on using parent concepts, this mechanism leads 
to significant performance increase because it guarantees that any reference segment is resolved only 
once for each use of the complex reference.  

4.4 Life-Cycle Management  
To demonstrate how objects are represented and accessed we assumed that they already exist. 
However, before an object can be accessed it needs to be created and this moment is the starting point 
for its life-cycle. At the end of its life-cycle the object needs to be deleted and after this moment it 
cannot be accessed anymore. Thus creation and deletion are procedures which limit the life-cycle of 
any object in time. After creation a new reference is supposed to be valid which means that it can be 
used for access. And after deletion this reference is supposed to be invalid which means that it cannot 
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be used for access anymore. One interesting detail in the life-cycle management is that creation and 
deletion deal with only references. That is, object existence means presence and validity of its 
reference (even if the object itself does not yet exist). And vice versa, object non-existence means that 
its reference is not valid and cannot be used for access (even if the object actually exists). This rule is 
a consequence of the principle that objects are not directly comprehensible and can be manipulated 
only via their references (see Section 2.1).  

Object creation and deletion is supposed to be managed by two special methods named create and 
delete. These methods have the same status as another special method – the continuation method – 
described earlier. In contrast to the continuation methods, creation and deletion methods are normally 
called explicitly by the programmer. However, they possess all properties of special methods. In 
particular, these methods are responsible for implementation of meta-transition, i.e., they need to 
implement some logic of crossing the border from identity to the entity. These methods also have a 
special meaning for the context stack mechanism.  

 

Listing 9. Creation method for one concept.  

01 static Map map = new Map();  
02 concept ount   Acc
03   reference {  
04     String accNo;  
05     void create() {  
06       print("=> Account: Create reference"); 
07       this.accNo = getUniqueNo();  
08       Object o.create(); // Go to object constructor  
09       map.add(accNo, o);  
10       print("<= Account: Create reference"); 
11     }  
12     void continue() {  
13       Object o = map.get(this.accNo);  
14       o.continue();  
15     }  
16     void delete() {  
17       print("=> Account: Delete reference"); 
18       Object o = map.get(this.accNo);  
19       o.delete();// Go to object destructor  
20       map.remove(accNo);  
21       print("<= Account: Delete reference"); 
22     }  
23   }  
24   object {  
25     double balance;  
26     void create() {  
27       print("-> Account: Create object"); 
28       balance = 0;  
29       print("<- Account: Create object"); 
30     }  
31     void delete() {  
32       print("-> Account: Delete object"); 
33       balance = 0;  
34       print("<- Account: Delete object"); 
35     }  
36   }  
37    
38   Account account.create();  
39 
40   $ => Account: Create reference  
41   $ -> Account: Create object  
42   $ <- Account: Create object  
43   $ <= Account: Create reference  

 

Just as other methods in CoP, creation and deletion methods are dual, i.e., they have two definitions: 
one in the reference class and one in the object class. Reference creation method is responsible for this 
reference initialization which means also allocation of the primitive reference it will substitute. 
Reference deletion method is responsible for deletion of the resources associated with this reference 
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including the substituted primitive references. The main role of object creation and deletion methods 
coincides with that of constructor and destructor in OOP. In other words, object creation method is 
intended to initialize the new object just after its creation and before it can be accessed (so it is the 
very first operation with the object). Object deletion method has to clean it up just before real deletion 
(so it is the very last operation with the object).  

Let us assume that there is one concept Account (Listing 9) and we need to define its creation and 
deletion methods. Creation method generates a unique identifier for the new account (line 7) and then 
allocates system resources for this object by creating a new primitive reference (line 8). It is precisely 
the point where the new object is really created. Line 8 is also the point where the object creation 
method (constructor) is called (line 26). Object creation method simply initializes the just created 
object assuming that nobody has accessed it yet. The final step consists in storing the association 
between this account number (this identity) and the just created primitive reference it is going to 
substitute representing the real object. Here we simply store this pair in a global map (line 9). When 
this object will be accessed this map will be used to resolve object references by the continuation 
method (lines 13).  

Deletion method follows the inverse sequence of steps. It resolves this reference (line 18) and then 
destroys the restored primitive reference (line 19) by executing object deletion method (destructor) 
just before real deletion (line 31). After deletion, this reference cannot be used anymore because the 
account number stored in its field cannot be resolved. Notice also that creation and deletion methods 
(just as continuation method) do not return any value. Instead, they are applied to a reference with the 
purpose to initialize or clean up its value. It is also possible define several creation/deletion methods 
taking some parameters.  

 

Listing 10. Creation or reuse of available objects.  

01 static Map map = new Map();  
02 concept Account  
03   reference {  
04     String accNo;  
05     void create(String name) {  
06       this.accNo = findAccount(name);  
07       Object o;  
08       if this.accNo == null) {  (
09         this No = getUniqueNo();  .acc
10         o.create();  
11         map.add(accNo, o);  
12       }  
13       e continue();  els  o.
14       sub.create();  
15        
16     }  
17     void continue() {  
18       Object o = map.get(this.accNo);  
19       continue ;  o. ()
20       sub.continue();  
21     }  
22   }  
23   object {  
24     double balance;  
25     Map map;  
26     void create() {  
27       balance = 0; map = new Map();  
28     }  
29   }  

 

In the case of concept hierarchy creation and deletion methods should propagate downward over 
hierarchy in the same way as it is done for continuation method. For example, if concept Account 
has some child concept, such as SavingsAccount then it could implement its creation method as 
shown in Listing 10. It is assumed that persons have main accounts with many sub-accounts. Creation 
method takes one parameter with the name of the owner of the new sub-account. However, it may 
well happen that this person already has the main account and in this case it has to be reused for 
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creating a new sub-account. Otherwise both a new main account and a new sub-account have to be 
created. Thus creation procedure checks if an appropriate object can be found (line 6). In the case it is 
not found a new account number is generated (line 9), new object is created (line 10) and the 
association between them is stored (line 11). (Alternatively, we might simply call creation method 
without parameters as implemented in the previous example.) If the main account is found for this 
user then we resolve this reference by calling continuation method (line 13). Finally, we call creation 
method of the child reference (line 14) so that if it is a savings account then it will be created. Notice 
that when a child creation method is executed, its parent already exists (either new or reused) and is 
directly accessible because its primitive reference is in context stack.  

Thus it is not necessary to really create all constituents of a complex object and each creation method 
can choose its own logic of creation which is appropriate for this problem domain. In particular, it is 
possible to implement lazy creation when we generate only a unique reference while real object 
creation will be performed only when this object is accessed. Another use case is where concept 
maintains a pool of objects as a list of primitive references. When a new object is requested to be 
created a primitive reference is taken from this pool rather than allocated by the system routine. 
Deletion method could simply mark the deleted primitive reference as unused and return it to the pool. 
It is also possible to assign explicitly some parent segment with valid values pointing to an existing 
object (such as main account). Then creation procedure will interpret it as a request to initialize only 
last segments. There exist also many other applications of this life-cycle management mechanism and 
it is especially useful for tasks where some complex logic is needed.  

5 Operations with References  

5.1 Reference Structure and Parameters  
A length of a complex reference is the number of segments in it. Depending on the first segment type 
and the last segment type references may have different lengths. In order to determine the number of 
segments in a complex reference we will use function length(). Its argument is a variable with some 
complex reference and the function returns the real number of segments in it. Notice that a reference 
can be longer than the value derived from the type of the variable because of two factors: the first 
segment is a super-concept of the variable concept, and the last segment is a sub-concept of the 
variable concept. For example, variable savingsAccount of concept SavingsAccount may 
consist of a single segment and have length 1 or it may contain three segments of concepts Account, 
SavingsAccount and SpecialSavingsAccount and have length 3.  

The length function can be also applied to a concept name and in this case it returns the number of 
segments from the root to this concept in the concept inclusion hierarchy. For example, 
length(SavingsAccount) is 2. It is also possible to provide two arguments as concept names 
which specify an interval of concepts in the concept inclusion hierarchy. Then this function returns the 
number of concepts between the first argument (excluded) and the second argument (included). For 
example, length(Account, SavingsAccount) is 1 because this interval includes only one 
concept SavingsAccount (notice again that the first argument is not included). It is obvious that  

),length()length( CRootC =   

Each reference consists of a sequence of segments where each next segment is of a sub-concept of the 
previous segment. It is important to have functions for determining concept for one or another 
segment of a reference. The next three functions, instanceof(), contextof() and conceptof() return 
concept name given a reference as an argument. This concept name is actually that of one of its 
segments.  

To get concept name of a single segment we can use operator instanceof() where argument is the 
reference segment (it is also concept of the object represented by this reference). Let us assume that 
reference  consists of n segments. Then  returns concept name of its 
i-th segment. If this operator is applied to the whole reference consisting of many segments then it 
returns concept name of the very last segment:  

〉〈= naaaa ,,, 21 K )(instanceof ia

)(instanceof)(instanceof naa = , where   〉〈= naaaa ,,, 21 K

In a programming language this operator returns real type of a reference stored in the variable. Notice 
that this type can differ from the declaration of this variable and may change in time because the 
variable may store references of different types (which are sub-concepts of its type). For example, 
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variable account declared as having concept Account may contain a reference to a sub-account and 
then instanceof(account) will return SavingsAccount.  

References do not need to start from the root segment and in this case it is assumed that some higher 
segments are missing, i.e., the equality  needs not to hold. In other words, 
a reference may include only local address relative to some context which is not stored in it. In order 
to get the type of context of a reference the function contextof() is used. This operator returns the type 
of the parent of the very first segment of this reference: 

Roota =super).(instanceof 1

super).(instanceof)contextof( 1aa = , where   〉〈= naaaa ,,, 21 K

If a reference includes all segments then this operator returns Root as its context. This means that it is 
a global reference with full context. It is apparent that context is always a super-concept of the real 
reference type:  

)(instanceof)context( aa >   

So it returns the type of segment which is not included in this reference. For global references it is 
always Root. In the general case the result of the operators instanceof() and contextof() depends on 
the real composition of their arguments.  

In programming languages references are stored in variables which are declared using some type. In 
order to return this type function conceptof() is used: In other words, if a variable has been declared as 
having concept MyConcept then operator conceptof() will return this concept name independent of 
what real reference is stored in this variable. However, it will always be a super-concept of the real 
reference type:  

)(instanceof)conceptof( aa ≥   

This means that real type is a sub-concept of the declared type. On the other hand, reference context 
has to be a super-concept of its declared type. Hence we get the following inequality:  

)(instanceof)conceptof()context( aaa ≥>   
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Figure 11. Reference structure and operators.  

 

The structure of reference according to these operators is shown in Fig. 11. A reference is broken into 
three parts:  

• Context is absent in the reference. The type of the last segment of the context is returned by 
the operator contextof().  

• Head of the reference starts from its first segment and ends with the segment having the 
declared type of the variable. The type of the last segment of the head is returned by the 
operator conceptof().  
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• Tail of the reference depends on the real type of the reference. It consists of all segments that 
follow the declared type of this variable. The type of the last segment of the tail is returned 
by the operator instanceof().  

5.2 Left and Right Casting  
An available reference may start from one segment while we need it to have another type as the first 
segment. In other words, we might want to change the context of the reference either by adding new 
starting segments as a prefix or by removing available starting segments. This operation is called left 
casting of the reference and is written as follows:  

a:tLeftConcep   

Here the new desirable type of context is written on the left and is separated from the variable by 
colon. If new segments have to be added then they are taken from the implicit context of this 
reference. If the reference is shortened then some starting segments are simply removed. The 
reference returned by this operation has the context specified in the argument:  

tLeftConcep):tLeftConcepcontextof( =a   
    where  or   )contextof(tLeftConcep a≥ tLeftConcep)contextof( ≥a

The length of the new reference depends on the new context:  

))(instanceoftConcept,length(Lef):tConceptlength(Lef aa =  

One important use of left casting consists in converting reference to a global reference by adding to it 
the maximal context. For example, if we have only savings account number but need to pass it as a 
fully qualified account description then we attach the global context as follows:  

fullAccountRef = Root : savingsAccount;  

Left casting can be also used to extract tail of the reference by cutting off its head part. For example, if 
we have an account variable and want to get only a sub-account reference stored in it (without the 
main account part) then it can be done as follows:  

subAccountRef = conceptof(account) : account;  

The operation of right casting changes the real type of this reference by either removing some last 
segments or by adding new (empty) last segments. We write the desired right segment concept after 
the reference separated by colon:  

ptRightConce:a   

This operation results in a new reference with the real type equal to the specified concept name:  

ptRightConcept)RightConce:(instanceof =a   
    where  or   ptRightConce)(instanceof ≤a ptRightConce)(instanceof ≥a

Right casting can be used to extract head of the reference by cutting off its tail. For example, if we 
have an account reference and need to extract only the main account identifier then it can be done as 
follows:  

mainAcountRef = account : conceptof(account);  

In this way it is also possible to get a reference to any intermediate object represented by this 
reference by specifying its concept.  

Given two references  and  it is possible to find their intersection 
and union. Intersection of two references includes their common segments:  

〉〈= naaaa ,,, 21 K 〉〈= mbbbb ,,, 21 K

bac ∩=  ⇔     and   kc∀ :, ji∃ )conceptof()conceptof( ik ac = )conceptof()conceptof( jk bc =

Union is defined dually as a new reference which contains segments of the both references:  

bac ∪=      or   ⇔ kc∀ :, ji∃ )conceptof()conceptof( ik ac = )conceptof()conceptof( jk bc =
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These operations are defined only for the case where the arguments and the result contain a well 
formed reference, which means that the concept of each segment is a super-concept of the next 
segment.  

super).(instanceof)(instanceof 1 kk cc =− , K,2=∀k   

Assignment operation consists in copying intersection of two references into the target reference:  

ba =      ⇔      ,   ji ba = )(instanceof)(instanceof:, ji baji =∀

If their intersection is empty then the target reference does not change. (Alternatively, the assignment 
could automatically left or right cast the target reference to get content of the source reference.) If it is 
necessary to copy only part of the source reference then it can be cast from left or right:  

ptRightConce::tLeftConcep ba =   

In this case only the segments between LeftConcept (not included) and RightConcept (included) are 
copied (if they are present in the target reference).  

Reference concatenation is equivalent to reference union where the real type of the first reference is 
equal to the context of the second reference. It allows us to get the first reference as the context and 
then attach to it segments of the second reference as an extension. Concatenation can be defined as 
right casting of the first reference to the type of the second and then copying the second reference to 
these extended segments: 

bac :=           , ⇔ )(instanceof: bac = bc =   

5.3 Reference Length Control  
In programming we do not always need fully qualified references with global context which start from 
the root. In many cases when the context is known or can be restored, it is enough to have only the 
local part of the reference. This corresponds to specifying only local address in mails which are 
known in advance to be used in the local context, say, in this country or in this organization. Such 
short references take less space and are faster during access because the context needs not to be 
resolved. In order to declare a short (local) reference it is necessary to specify its new context. This 
can be done by prefixing the variable type. For example, if the allocated variable is of type 
SavingsAccount but has to contain a reference with the context Account then we write it as 
follows:  

Account : SavingsAccount subAccountRef; 

This variable will as usual represent an instance of concept SavingsAccount but its higher 
segments will not be stored. By default, if the context is not specified then the variable is supposed to 
have the global context, i.e., it starts from the root:  

Root : SavingsAccount fullAccountRef; 

Given a short reference the question is how to access the represented object if some information is 
missing. The default rule consists in using the current context if it is absent in the reference itself. 
Notice that the current context is reused rather than resolved again for this reference (it is stored in 
context stack described in Section 4.3). This is why access on such references is faster.  

The second approach to restoring context consists in specifying it explicitly when a new variable is 
declared. In this case we provide a concrete variable with some context instead of its type:  

Account mainAccount = getAccount();  
mainAccount : SavingsAccount subAccountRef; 

Here new variable subAccountRef will be allocated using only segments after context Account. 
However, the difference is that the context itself is specified via a variable with concrete value rather 
than as a concept name. Thus this variable will have a concrete context rather than the current context. 
This context (main account) needs to be resolved when references based on it are used for access. An 
advantage is that one context stored in one variable can be reused by many local references.  

The third approach consists in declaring some context type and then explicitly specifying context 
reference only when this variable is used. This approach is useful if there is one context variable and 
many variables storing local references. By attaching these local references to the context we can 
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produce fully qualified references that can be used to access the objects. This is done by concatenating 
(extending) the context variable and the local references before the reference is used:  

Account mainAccount = getAccount();  
Account : SavingsAccount subAccount; 
 
subAccount = getSubAccount();  
mainAccount : subAccount.someMethod();  
 
subAccount = getSubAccount();  
mainAccount : subAccount.someMethod();  

Here we declare local reference subAccount and get its value from method getSubAccount. 
After that we use this reference to access the represented object by attaching its segments to the 
context stored in variable mainAccount. Such an approach is more efficient than manipulating 
directly global references because not all segments are passed and processed and the context is 
attached only at the last step when the object needs to be really accessed. This approach can be even 
be used to concatenate several contexts to produce a fully qualified reference:  

globalcontext : localContext : localVar.someMethod();  

Here we store global and local contexts in different variables which are then concatenated with local 
object address. Notice that the operation of concatenation does not require precise match between 
variables – it could be made smart enough to produce a reference even if the concatenated variables 
overlap.  

Another use of contexts consists in specifying a scope for the whole block of code rather than for only 
one access request. The problem here is that normally the current context is defined by the current 
object and all computations are executed in its context. In many cases however we need to carry out a 
sequence of actions in the context of another object. The legal way for doing that consists in defining 
a method of this object class. However, if we do not want to define a special method (for example, if 
this sequence of actions is used only once) or cannot define a method (if this concept is not available 
for editing) then the only solution consists in executing these actions in the source context. This might 
be very inefficient because each action requires resolution of the target reference. In order to 
overcome this difficulty we can change the context for the block of actions as follows:  

MyContext myContext = getContext();  
myContext : { /* block of code */ }  

Before this block of code is entered the context myContext is resolved just as it is done for 
executing any method applied to this variable. After that the whole block has direct access to the 
context object. Effectively, the block of code is equivalent to a method of the concept and the only 
difference is that it is defined outside. In particular, all operations in the block are applied to its 
context by default. For example, if we need to carry out several operations within an account object 
then it could be implemented as follows:  

Account account = getAccount();  
account : {  
  double b = balance; // = account.balance  
  if(b < 100) debit(100); // = account. debit(100)  
  Account : SavingsAccount subAccount;  
  subAccount = getSavingsAccount();  
  boolean isEmpty = :subAccount.isEmpty();  
  if(isEmpty) notify();  
}  

Notice again that here the target context reference account is resolved only once when the block is 
entered and then all operations are executed using direct access. So it is not simply a shortcut since it 
may change the logic of the program because several operations executed individually from outside 
may not be equivalent to one sequence of operations executed from inside (for example, because of 
transactional nature of the object or security reasons).  

 29



6 CoP as a Generalization of OOP  

6.1 Inheritance  
In OOP inheritance is interpreted as IS-A relationship between child class and parent class. This 
means that if class Ext inherits class Base then we can say that any instance of Ext IS also an 
instance of class Base. For example, if SavingsAccount were defined as inheriting class 
Account then each savings account would be also an account. And if Button were defined as 
inheriting class Panel then again each button would be a panel. This is normally implemented as 
automatic inclusion of all fields and methods of the base class into its extensions. Each instance then 
possesses not only its own fields and methods but also those defined in its parent classes. For 
example, a button instance has also fields which are specific to panels just because any button IS-A 
panel. And any savings account IS-An account and hence each its instance has also fields which are 
specific to accounts.  
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Figure 12. In OOP objects inherit base (system default) reference and exist in flat space.  

 

One consequence of such a classical approach is that an object is viewed as indivisible entity 
represented by one reference even if it consists of many parts (object segments) described in different 
classes within its class inheritance hierarchy (Fig. 12). For each object all segments are allocated (in 
one interval of memory addresses) which are then considered parts of this and only this object. For 
example, we cannot separate panel segment (instance of class Panel) from button segment (instance 
of class Button) because it is one indivisible object represented by one reference. It is also not 
possible to share base segments among many extension segments because all segments of one object 
are in one-to-one relationship. For example, it is not possible to have many savings account segments 
for one main account segment.  

Inheritance-based approach means that hierarchy exists only at class level at compile time while at run 
time it disappears and objects exist in flat space. Indeed, in class hierarchy many extensions may share 
one base class, i.e., base class is not copied or cloned for each new extension. At run time the situation 
is different and each new extension object gets its own new base segment. It is not possible to get all 
extensions of one base object because the hierarchy of objects simply does not exist at run time.  

Inheritance is also associated with state and functions reuse. However, an important point here is that 
we can really reuse object descriptions at compile time because it is enough to point to a base class. 
However, at run time reuse is reduced to using common behaviour (implementations of functions are 
not copied for each instance) while state is not reused. Instead, each object gets its own completely 
independent state. In other words, in OOP it is not possible to reuse (share) state of base object 
segments at run time.  

The described classical approach to inheritance has actually deeper roots and wider use. In particular, 
it is used in many other disciplines like knowledge engineering (for example, frames [Min74]) or 
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ontologies [Gru93, Gru95]. However, its central idea remains the same: fields of base classes are 
duplicated for each new extension. And this is precisely what is different in the concept-oriented 
paradigm in general and in CoP in particular, i.e., CoP changes one of the cornerstones of OOP by 
proposing to use inclusion instead of inheritance. An amazing thing however is that the new approach 
is still backward compatible with the old one, i.e., under certain simplifying conditions inclusion turns 
into inheritance.  
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Figure 13. In CoP objects exist in a hierarchy where each segment is represented by its own reference.  

 

The main difference of inclusion from inheritance is that it is interpreted as IS-IN relationship 
between elements. This means that if concept Ext is included in concept Base then we can say that 
any instance of Ext exists IN an instance of concept Base. Notice that we apply verb ‘exists’ to two 
instances of two concepts, i.e., they both are assumed to exist independently but in some relationship. 
For example, if concept SavingsAccount is included in concept Account then each savings 
account will exist in the context of some account. And if concept Button is defined as included in 
concept Panel then again each button will exist in the context of some panel (Fig. 13). The most 
important point here is that base objects and extensions exist independently as normal objects having 
their own references in the same way as cities, streets and houses are independent objects having their 
own identifiers. In particular, if we create a button then it does not mean that a new panel will be also 
created – this new button may well be created in the context of already existing panel where other 
controls already exist. And when we create a new savings account then the main account normally 
already exists and may have other sub-accounts in it.  

Thus object segments in CoP exist separately at run time just as their concepts exist separately at 
compile time. This makes the whole picture symmetric because the hierarchy of concepts at compile 
time is used to model the hierarchy of objects at run time. The conception of reuse also changes its 
form. In CoP reuse means the possibility to use state and functions of the common context, i.e., the 
base object which is shared among many extensions. This significantly changes the role of the base 
object. Now it is interpreted as a container or environment for many internal elements. It provides 
useful services which can be used from inside via its object methods. Dually, it protects its internal 
objects from direct access by implementing some reference methods.  

Inclusion can be turned into the classical inheritance if object segments in the hierarchy do not have 
their identity. This can be done by using empty reference classes for extensions (we still can use 
reference methods which will intercept incoming access requests). In this case extensions are 
indistinguishable in the context of their base objects and hence it is assumed that they inherit identity 
of the context. In other words, base object and its extensions are considered one and the same thing 
represented by one (base) reference. Object allocation in this situation can be optimized by putting 
them side-by-side in one memory interval. Obviously, here we obtain the case considered in OOP 
where classes by definition are not able to model identity which is provided by the system. As a 
consequence all object segments have the same identity in the form of primitive reference.  
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6.2 Polymorphism  
Polymorphism is a mechanism which allows the programmer to manipulate objects of more specific 
types as if they were of the base type. In other words, we can view objects as having the base type 
without the need to know their concrete more specific type. For example, if we declare a variable as 
having type Account then polymorphism allows us to apply method getBalance to references 
stored in this variable even if they represent more specific account like savings account or checking 
account:  

Account account;  
double balance;  
account = getSavingsAccount("Alexandr Savinov");  
balance = account.getBalance(); // Balance of savings account  
account = getCheckingAccount("Alexandr Savinov");  
balance = account.getBalance(); // Balance of checking account  
account = getMainAccount("Alexandr Savinov");  
balance = account.getBalance(); // Balance of main account  

In this example it is enough to know that the object is of class Account and that this class has 
method getBalance. However, the essence of polymorphism is that this method is not a concrete 
procedure but rather a placeholder or label for some general action. In other words, by applying this 
method at compile time we actually do not know what will happen at run time. The real action that 
will be executed at run time depends on the real type of the object which can be found only at run 
time. Thus such method calls in the case of polymorphism are intrinsically indirect. For example, if 
the real object is a savings account then the balance is calculated using one procedure while for 
checking accounts it is calculated using another procedure.  

One approach to implementing polymorphic method calls consists in checking the real object type at 
run time and then making a decision what procedure to execute. For this purpose each object has to 
store information on its real type in some well known field. This technique is not very efficient and 
therefore in OOP normally a modified approach is used. The idea is that each object stores a pointer to 
a table of function pointers which are specific to its class (instead of the class identifier). All objects of 
one class point to one and the same table which is called a table of virtual functions or vtbl. When a 
method is applied to an object, the compiler makes an indirect method call using this table. Yet the 
result is the same – the real procedure applied to the object is not known at compile time and depends 
on the real object type at run time.  

One property of the classical approach to polymorphism is that each new class completely overrides 
methods of its base class. This means that if we apply a method to an object then it is guaranteed that 
only one method defined in one class in the inheritance hierarchy will be executed (although the 
decision is made at run time). The compiler inserts a very small piece of intermediate code for each 
method call (actually several instructions). This code is responsible for method call indirection by 
choosing (dispatching) the method defined for this concrete object type.  

In principle, CoP could mechanically integrate the object-oriented approach to polymorphism where 
child concepts completely override parent concepts. However, such a solution would be too artificial 
and incompatible with the main concept-oriented principles. Therefore CoP develops its own 
mechanism of polymorphism which generalizes the classical one. The main idea of the concept-
oriented polymorphism is based on the precedence of base reference methods over child reference 
methods (Principle 6), which means the ability of references to intercept accesses to child references. 
Obviously, this means that the base reference is the very first element in access request processing 
chain, i.e., before the target object gets control it can somehow contribute to the processing of the 
method call. Thus an intrinsic feature of the method execution mechanism is that target object 
methods are not called directly but rather method execution is a sequence of steps. Applying a method 
to a reference in the source code means providing a named path for processing this request rather than 
specifying a concrete procedure for execution.  

By intercepting all incoming access requests by the base reference, it is possible to perform some 
processing and then pass the request to the child reference. (When the request is being processed we 
can use functions of the base object.) The child reference gets the access request, processes it and then 
again passes to the next reference and so on till the target reference. In the simplest case parent 
reference does not perform any processing and simply passes it further. And only if it is the last 
(target) element in the hierarchy, the reference can do some meaningful actions which correspond to 
the type of this element. For example, let us assume that there is base class Panel extended by class 
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Button. If we declare a variable of the base class which is then assigned a reference to a button 
object then method draw applied to this variable will draw a button even though the variable is a 
panel. In OOP this is done by overriding method draw. In CoP, the base reference will intercept the 
invocation of method draw. Then it can check if there is an extension and decide how to proceed. In 
the case of the button object the base reference can simply pass this request further to the button 
reference segment which will be responsible for drawing this object of class Button. In other cases 
the base panel reference may do something specific to the current level before it passes request to the 
child element. For example, the panel might fill its background as an intermediate step.  

Let us consider example in Listing 11. Concept SavingsAccount is included in concept Account 
(so one account may have many savings accounts as well as other types of sub-accounts). Both 
concepts implement method getBalance. The method of Account checks if the child object 
really exists (line 5) and then either returns its own balance (line 5) or the balance of the child account 
(line 6). In code we can declare a variable as having base type Account and then the balance 
returned by getBalance method depends on the real object type. If the object is of concept 
Account (line 24) then we get one behaviour. If it is of concept SavingsAccount (line 26) then 
we get another behaviour.  

Notice that SavingsAccount assumes that there can be also internal objects (line 15), i.e., it is 
implemented in the concept-oriented manner where methods are intermediate processing elements 
getting a request from somewhere and then dispatching them to somewhere for further processing. 
The polymorphic behaviour is defined by the programmer who writes intermediate methods each 
contributing to the overall processing. We can include a new child concept in SavingsAccount 
later for example to describe some concrete savings account type and it will be incorporated into the 
whole access sequence by getting requests from its parent concept.  

 

Listing 11. Polymorphism in CoP.  

01 concept Account  
02   reference {  
03     String accNo;  
04     double getBalance() {  
05       if(sub == null) return balance;  
06       else return sub.getBalance();  
07     }  
08   }  
09   object { double balance = 10.0; }  
10 
11 concept SavingsAccount  
12   reference {  
13     String subAccNo;  
14     double getBalance() {  
15       if(sub == null) return balance;  
16       else return sub.getBalance();  
17     }  
18   }  
19   object { double balance = 20.0; }  
20  
21 Account account;  
22 double balance;  
23 account = findAccount(); // Real type is Account  
24 balance = account.getBalance(); // = 10.0  
25 account = findSavingsAccount();// Type SavingsAccount  
26 balance = account.getBalance();// = 20.0  

 

From this example we see that one and the same method applied to a variable of base type may cause 
different actions depending on the real type of reference stored in it. In CoP, such a method call is a 
sequence of actions associated with the reference segments. Each intermediate reference and object 
may contribute to the processing of the access request. As a consequence, the real composition of a 
complex reference influences how requests are processed. In OOP, polymorphism is much simpler 
and is reduced to choosing the method defined in the real object class which completely overrides its 
base methods. Thus the method executed by default in OOP is only the last step in a sequence of 
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actions executed in CoP. Interestingly, CoP does not guarantee that the last method corresponding to 
the real object type will be reached while in OOP it is always so. The base reference methods override 
child methods and may finish processing at any moment without continuation. For example, the base 
method may raise an exception because of security constraints or insufficient resources. Or we could 
disable method overriding at all.  

Such an approach is more flexible because request processing is distributed among all constituents at 
different levels rather than concentrating all the functionality in one class. An advantage of the 
concept-oriented polymorphism is that the programmer is able to control the whole sequence of 
access. However, in simple situations it is less efficient because in OOP the indirection used for 
calling virtual methods is optimized by the compiler.  

The mechanism of polymorphism in CoP is based on the general assumption that method execution is 
a sequence of intermediate processing steps performed at the borders on the way to the target. A 
method name is a specification of the pass or tunnel through borders. Once a class implements a 
method with some name, all method calls having it must go through this pass. In such an approach to 
programming we need to describe intermediate actions executed at different borders independently of 
how access requests are initiated, where they start and finish. Execution of such a program is reduced 
to routing access requests according to their addresses stored in complex references.  

6.3 Object Construction and Deletion  
Basically object creation consists of two steps: (i) creation of object reference along with the 
allocation of all the necessary resource and (ii) object initialization. However, in OOP the first step is 
almost completely controlled by the compiler and environment while the second step is implemented 
by the programmer. It is quite natural separation of duties because references in OOP are not 
controlled by the programmer and hence their allocation is managed automatically by the system. In 
order to support object initialization (second procedure) classes provide a mechanism of object 
construction normally in the form of a special method, called constructor. What is specific in this 
method is that it is executed automatically just after the object is allocated. For example, in Java, bank 
account initialization is written as follows:  

class Account {  
  double balance;  
  public Account() { // Constructor  
    balance = 0;  
  } 
}  

It is important to understand that constructors are not equivalent to manual initialization, i.e., having 
the above constructor is not one and the same as applying method setBalance(0) to the just 
created object. The thing is that constructor is executed at different time than any normal method. 
Namely, it is guaranteed that constructor is the very first method that is executed for this object after 
its creation. In contrast, a normal method called after object creation is executed with some delay and 
theoretically it may happen that some other method will intervene. So the constructor call is 
performed somewhere during object creation, i.e., within the system procedure, and this makes it 
different from any other method.  

For many applications such asymmetric approach where references are allocated automatically while 
objects are initialized manually works perfectly. However, in many cases it is desirable or even 
frequently necessary to have full control over both these procedures. In other words, we would like to 
treat references precisely as we treat objects by having reference constructor and other attributes of the 
creation mechanism. In CoP this problem is solved in a principled manner by introducing concepts 
which consist of two classes where both reference class and object class have their own creation 
methods. Using the dual creation methods of concepts programmers can control not only how objects 
are initialized by also how they are created. In other words, it is possible to provide custom object 
creation procedures which substitute for the corresponding system procedures.  

The same situation is with object deletion. In OOP we can control only what happens just before an 
object is deleted using destructor but cannot influence how concretely the object is deleted. CoP 
makes this mechanism symmetric by using dual deletion methods defined in reference class and object 
class of a concept. The reference deletion method is responsible for de-allocation of the resources 
while object deletion method is analogous to the conventional class destructor and cleans up the object 
itself.  
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Yet CoP life-cycle management is compatible with OOP. We can always define empty reference class 
for a concept and then its instances will be identified by parent references. Such concepts effectively 
inherit life-cycle management mechanism from the base concept. It can be rather convenient where 
we need a basic life-cycle management mechanism which needs to be reused for many different types 
of objects. It can be developed in a base concept which has a full-featured references class (and 
possibly does not have an object class). After that user concepts are included in it and inherit its life-
cycle management functions.  

7 Principles of the Concept-Oriented Paradigm  

7.1 There is Always Something in-between  
Informally, the classical approach to programming is analogous to the action-at-a-distance principle in 
classical physics dominating in 18th century. According to this postulate objects can interact 
instantaneously without any delays or interference from other objects or environment. For example, 
operations of reading/writing values or calling methods are considered indivisible actions. Even if we 
know that the elementary operations have some more or less complex implementation, we cannot use 
this knowledge because this layer is still closed for the programmer. Here again it is assumed that the 
main goal of the programmer consists in describing a sequence of operations that need to be executed. 
The question of how concretely these operations can be executed is already another issue. Such a 
classical paradigm has one big advantage: it allows the programmer to abstract from the details of 
implementation. Indeed, the principle of instantaneous actions is very convenient because we can 
concentrate on the operations that have to be executed leaving all the underlying mechanisms to 
someone else.  

Unfortunately this advantage is reached by paying very high price. Namely, the classical approach 
simply cuts off all base layers so that they look like non-existing. Such an approach can be qualified 
as ignorance rather than abstraction. In the case of true abstraction we can develop a program as if 
other layers are absent but still having clear connections between layers and having a possibility to 
develop these layers according to the system requirements. For example, one program might have 
requirements to read/write operations while another program (or part of one program) might require 
some other behaviour for these operations. In this case we need to satisfy two conditions. On one hand 
we still want to work by abstracting from implementation details. On the other hand, we want to have 
a possibility to develop custom base layers of the system.  

The classical approach works perfectly for small programs where one universal environment can serve 
most of the needs. However, as programs get larger it is more and more difficult to follow the 
principle of instantaneous action. It is especially difficult when developing heterogeneous and 
distributed systems. In such systems it is already obvious that individual operations that were regarded 
as elementary can be quite complex and may need significant resources for execution. What is even 
more important is that these operations influence the behaviour of the whole system and we cannot 
simply ignore them. Transactions, security, persistence and many other mechanisms all belong to this 
category of operations which are implemented in one layer but influence the whole program. In this 
case one read/write operation or method call is not only rather complex action but it also serves this 
concrete system and has to reflect its design.  

In order to overcome these difficulties the concept-oriented paradigm makes a fundamental 
assumption that  

Objects cannot interact instantaneously at-a-distance and there is always some environment 
between them that is responsible for propagating interactions.  

This means that any operation executed in the program is not elementary and is interpreted at some 
other level. In particular, we cannot think of the object access process as an elementary instantaneous 
action. Thus assuming that instant action does not exist we postulate that the logic of propagation of 
interactions cannot be avoided and hence any access is by definition indirect. In other words, any 
access needs some time and intermediate processing to be performed (Fig. 14).  

The fact that some basic operations are not elementary and need to be implemented at some level is 
not new of course. It is well known that reading/writing may need many processor instructions for 
execution and each processor instruction needs many processor cycles and operations at micro-level. 
Such a type of thinking reflects procedural programming paradigm where an operation can be 
implemented by means of some procedure which then can be used as one action. However, in this 
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case we need to explicitly call this custom procedure to make use of it. In the concept-oriented 
paradigm this dependence is reversed. Now it is the underlying basic environment that has precedence 
over new layers. In other words, we are not using environment when writing a program – instead, the 
environment is acting implicitly behind the scenes. It takes control over the process of action 
propagation without any explicit instruction to do so. For example, when program methods are called 
the environment could intervene without any special user action. Thus procedures written in one layer 
are atomically used in another layer. In contrast, procedural programming assumes that user defined 
procedures have to be explicitly called somewhere in the program.  

 

environemnt 

objects

interaction 

 
Figure 14. Interactions cannot propagate instantaneously and need some active intermediate environment.  

 

Another characteristic feature of intermediate functions is that they have a cross-cutting nature. This 
means that one and the same function can be used within any piece of code. In the classical approach 
this phenomenon leads to numerous fragments of one and the same code distributed all over the 
program. For example, before an object is used it has to be locked; some methods have to be wrapped 
into a transaction context; an object has to be loaded from a database etc. Notice that such cross-
cutting functions cannot be effectively managed using classical approach because they are not 
associated with any class or procedure. They are associated with arbitrary parts of the system 
according to some special logic which is not covered by procedures or classes (one approach to deal 
with them consists in using aspects [Kic97]). In the concept-oriented paradigm any code may have a 
cross-cutting nature if it is used as in an intermediate environment. It is a consequence of the ability of 
environment to actively intervene into the process of object communications. In other words, one and 
the same functions described in one place in the program can be automatically used in numerous 
places of this same program without any explicit use like method call. It is done by simply declaring 
this function as an environment for other functions. An advantage of using CoP in this case is that it 
allows the programmer to modularize cross-cutting code and put it in one place. As a result, it is not 
necessary to crawl through the entire program source code to find all the places where some 
intermediate functions are used. Instead, we move to a different model by changing the environment.  

One consequence of this paradigm shift is that any explicit action written in the program entails some 
hidden consequences automatically triggered in the underlying environment. These consequences 
cannot be avoided once an environment exists. However, we can control this hidden behaviour by 
developing our own customized environment with the necessary functions. In any case, it is important 
to understand that this hidden functionality may account for a great deal of the overall system 
complexity. In other words, it is frequently more important what happens during access than in the 
end points. The process itself tends to be more important than the goal. 

7.2 There is Always Something out There  
We have postulated that objects cannot interact instantaneously and need some environment to 
propagate these interactions. Then the question is what this environment is and how it can be 
modelled. To solve this problem the concept-oriented paradigm makes the following assumption:  

Any element exists in context of some other parent element which plays the role of 
environment  

Using this principle a system can be represented as hierarchical space where elements are separated by 
space borders (Fig. 15). In this case an interaction is only possible by intersecting the borders. And the 
space border is precisely the point where some processing is performed. Thus any element is not only 
a starting/ending point for interactions but also a border between elements which mediates interactions 
among them. The shift of paradigm is that now the system functionality is concentrated on space 
borders rather than in objects themselves. And this functionality is automatically triggered whenever 
any process intersects it. In contrast, in the traditional OOP approach the functionality is supposed to 
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be concentrated in objects (end points) and it is activated only explicitly by calling methods or 
sending messages.  
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Figure 15. Computation is a process of border intersection during object access.  

 

Parent elements play a role of environment for their child elements and hence they are responsible for 
transfer of interactions between them. If one child element needs to interact with the other child 
element then they use their parent element which is actually the only member of the system that 
knows how to connect them. During the process of interaction transfer between its children, the parent 
element can actively participate in processing the requests. On the other hand, context can provide 
useful services to its child elements which means that environment not only implicitly intervenes into 
the process of information transfer but also helps its children by providing basic functions that can be 
explicitly called from inside. The behaviour of any element in such a hierarchical environment is 
always context-dependent, i.e., one and the same element can behave differently in different contexts 
and depending on the space geometry. The context is analogous to physical laws or laws in a state: we 
cannot change it if it is already available but we can adapt to it and use it for our goals. Another 
informal analogy is relativity theory which says that objects in space change its geometry and the 
geometry influences objects that exist in it. In CoP the situation is the same: objects are not simply 
end points but rather implement functions of space with some specific geometry and influencing other 
objects. 

Another consequence of having the hierarchical structure of elements is the change of 
extension/specialization principle. In the concept-oriented paradigm extension/specialization means 
placing an element into a context or putting into a parent environment. In particular, this allows for 
sharing base elements.  

Traditional approach to programming consists in describing a sequence of actions which can be 
defined as procedures or class methods. A procedure or method call in this case results in an 
immediate execution of its operations. Although in reality it is not so and there is always something 
out there, the existing approaches simply ignore the events happening under the hood. CoP 
significantly changes this view and here again we see the paradigm shift. Any operation is actually a 
sequence of actions executed on the way from the current location to the destination. The programmer 
specifies only the final goal (object) and the type of processing (method) while the real processing 
depends on the position of the target object in the hierarchical space.  

In particular, the programmer cannot say precisely what happens after a method is applied to an 
object. A method call is a final goal and its execution depends of the intermediate elements of the 
system, i.e., what borders will be crossed. For example, crediting a bank account involves one 
arithmetic operation applied the account object. In OOP calling this method would result in precisely 
what is written in its definition, i.e., executing this arithmetic operation. In CoP this arithmetic 
operation will be only the last action in a sequence of possibly hundreds or thousands intermediate 
operations executed during object access. All these operations are executed transparently behind the 
scenes but they are written by the programmer. In such an approach behaviour of the program is less 
deterministic. We cannot say where one or another function will be executed because each 
intermediate element will make its own contribution. The programmer describes only local behaviour 
of intermediate elements and these functions then are activated automatically during object access.  

7.3 Everything Has an Identity and Entity  
We have postulated that objects exist in a hierarchical space where they represent borders actively 
intervening in the process of interactions between objects. However, to interact in a hierarchical space, 
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objects need unique addresses which could represent them in any part of the space. Without such an 
address system interactions are not possible because it is not possible to specify target objects. Thus 
having an address is one of the necessary requirements to any element. And vice versa, if there is an 
address then it has to represent some object. In other words, if we define an object, then we have to 
think about its identity and once we define an identity we have to think about the entity it represents.  

The shift of paradigm is that we think in pairs rather than using separately identities and entities. A 
single reference without an object and a single object without a reference are degenerated constructs. 
In the concept-oriented paradigm they are two parts of one and the same thing and should be modelled 
together. Similarly to the principle “everything is an object” in OOP, we use the principle “everything 
is a pair of one reference and one object” in CoP.  

One of the main contributions of the concept-oriented paradigm is that it completely legalizes 
references as a crucial element of any system (while CoP proposes to use concepts for their modelling 
in a program). References are made first class citizens with the same rights as objects. The shift of 
paradigm is that having only objects is not enough to efficiently describe behaviour of a system. Such 
an object-oriented picture is not complete what is especially problematic in complex systems. It can be 
completed by adding the notion of reference as an object representative. However, the main 
contribution of the concept-oriented approach here is that references are not simply recognized as an 
important element but made dual to objects, i.e., they may possess behaviour just as objects. In some 
sense references can be viewed even more important elements than objects because a system can exist 
without objects but it cannot exist without references. Moreover, a system consisting of only 
references may possess rather complex functionality. Another important property is that development 
of a system starts from developing the structure and functions of its references, i.e., it is more 
important how objects are represented and accessed while object functions can be defined later.  

The duality of references and objects can be considered a continuation of a very general and deep 
principle of Separation of Concerns formulated by Dijkstra [Dij76]. The main idea of this principle is 
that any problem or system functionality can be viewed from different points of views or concerns. 
One specific feature of the concept-oriented paradigm is that we distinguish two orthogonal concerns 
any program consists of: behaviour of references and behaviour of objects. To develop a program 
functions of references are as important as functions of objects. In this sense it is very important to 
have adequate and convenient means for modelling inseparable unity of these two cross-cutting 
concerns and concepts in CoP satisfy most of the necessary requirements. The duality of references 
and objects creates a nice yin-yang style of balance and symmetry between two sides of one reality.  

An important feature of the concept-oriented paradigm is that it proposes to use one construct, called 
concept, for modelling both concerns and both sides of any element. Informally, the relationship 
between concepts and classes is analogous to that between complex numbers and real numbers in 
mathematics. Like complex numbers consisting of imaginable and real parts, concepts involve two 
constituents but are manipulated as one construct which may exhibit properties of both references and 
objects. In the same way as complex numbers are much more expressive and natural for many 
difficult mathematical tasks, concepts are much more expressive and natural in computer science 
including programming, data modelling, system analysis and design.  

 

start 

end  

reference 
segments 

target object 

 

object segments

     

 
Figure 16. Objects in space are identified by their hierarchical addresses  

 

Taking into account that the space where objects exist has a hierarchical form, references are also 
arranged hierarchically, i.e., any reference has a parent reference (Fig. 16). Thus it is important to 
understand that any reference is a relative representation of an object with respect to some context. 
This relativity cannot be avoided and even the root of the hierarchy has a restricted scope. Thus by 
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choosing some root we simply outline the scope of the whole system or model by postulating that 
everything in this system will happen within this context.  

A consequence of having references and objects is the duality of methods. This means that in the 
general case all methods have two definitions: one in the reference class and one in the object class. 
Reference methods are used to enter the context while object methods are used as services provided 
by this context to internal elements. In contrast, in OOP there is only one type of methods.  

7.4 Everything is Relative and Virtual  
The concept-oriented paradigm uses inclusion relation to describe hierarchical structure of space 
where inclusion generalizes inheritance. However, inclusion relation is only one of two structuring 
relations in this approach and the second one is substitution relation which does not have classical 
analogues. Substitution is a completely new relation that must be taken into account in any system 
design. Thus the concept-oriented paradigm uses two relations: inclusion and substitution. The main 
role of inclusion consists in extending the existing coordinates by introducing internal coordinates 
which are concatenated to the parent as additional segments. The main role of substation consists in 
introducing new levels of indirection elements of which are used instead of the elements of the 
substituted level. In other words, inclusion adds new levels while substitution replaces existing levels. 
New levels produced by inclusion relation are used in addition to the existing parent levels while new 
levels produced by substitution are used instead of the existing parent levels.  

Substitution relation introduces a new dimension into system analysis and design because it allows the 
developer to describe virtual spaces, i.e., substitution is a mechanism of virtualization. For example, 
instead of using physical memory address we can introduce our own references which substitute them. 
And then instead of using these custom references we can introduce names for identifying objects. 
Each new substitution level is a new virtual address system. It is called virtual because it does not 
exist in reality, i.e., it is our own internal convention (a convention within some scope or context). 
Such virtual addresses do not have any indication what kind of reality they are based on. The shift of 
paradigm here is that developing such virtual spaces is one of the main concerns in system design. In 
other words, we say that any concrete system needs its own virtual space where its elements will exist. 
We do not develop a system in terms of computers, memory, disks and other physical entities. Rather, 
we create our own virtual environment which reflects the problem domain. And after that this virtual 
environment can be bound in one or another way to the physical environment(s) or a base virtual 
environment.  

Program development in OOP focuses on describing object behaviour via classes which can be 
expressed as follows: “describe your classes and you will get your system”. In contrast, in the 
concept-oriented paradigm the focus shifts in the direction of virtual address spaces and one of the 
main concerns consists in describing their layered structure: “describe your virtual address spaces and 
you will get your system”. Defining the virtual address system is what the concept-oriented 
development process should start from because objects cannot live in vacuum and need identifiers. 
They cannot be homeless and need some environment providing all the necessary facilities like life-
cycle management. The pair of inclusion and substitution relations provides the mechanism for 
designing such object homes with virtual addresses and other services. Notice that the objects 
themselves can be quite simple and most of the complexity is concentrated in the virtual environment 
and this is why most of the attention should be paid to its development. Here we see a striking 
similarity of CoP with an old idea expressed by Butler Lampson (who attributes this saying to David 
Wheeler) in one of his aphorisms: “All problems in computer science can be solved by another level 
of indirection”. A distinguishing feature of CoP is that it proposes a concrete solution for dealing with 
indirection, particularly, by bringing substitution relation into the theory and practice of programming. 

8 Related Work  

8.1 Hardware Level  
Access indirection exists at all levels of the system organization including physical interactions and 
even deeper just because instant access is an abstraction and any access requires some intermediate 
environment and some time to propagate. However, here we start the discussion from the hardware 
level of the system organization ignoring all the underlying levels such as implementation of digital 
micro-circuits.  
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It is frequently assumed that memory addresses provide direct access to its contents. However, it is an 
abstraction which is valid only from the point of view of the system programmer. For the processor 
each such access means quite a lot of work. First of all it is important to understand that (in 
contemporary architectures) each address is actually a location in a virtual address space, i.e., it is an 
abstract space which is not directly bound to the real memory. In 32-bit architecture one address is a 
32-bit word (4 bytes) which describes the location of one byte in memory. However, each application 
has its own virtual address space, i.e., they exist in different contexts. An application can use such 
virtual address to manipulate its contents by reading/writing it. However, all these manipulations are 
made in a virtual address space rather than in physical address space. This means that the application 
does not actually know where the necessary cell is located in physical memory. So a virtual address 
substitutes a physical address.  

As we already noticed, having a virtual address system has two consequences. First, we are not bound 
to the physical reality and have more freedom in manipulating data. Second, each access is more 
complex and less efficient and it is the task of the processor to resolve virtual addresses into the real 
physical location. In order to support two spaces and indirect access, processors provide several 
mechanisms. First of all, it is necessary to understand that the context for each virtual address space 
needs to be somehow expressed. It is normally a kind of starting address of the virtual address space 
while virtual addresses are offsets applied to this origin. This starting address is manipulated by the 
processor with special commands normally in kernel mode using the operating system kernel routines. 
For example, when an application is loaded, the kernel allocates a virtual address interval in the 
physical memory by initializing the corresponding processor registers. After that the processor can 
automatically translate virtual addresses into physical addresses in user mode.  

Resolution of virtual addresses is implemented at hardware level using the values of the processor 
registers and other data structures. In other words, processor knows that the addresses in user registers 
need to be resolved into physical addresses and does it transparently for each access. It is important 
also that processor carries out many other useful operations for each indirect access. In particular, it 
checks security conditions, i.e., it checks if this application is permitted to access the addressed cell 
using the specified operation. It also checks if the physical memory is really available. If not, then it 
raises an exception which is caught by the operating system. This mechanism is used to implement 
swapping where pages of memory are stored on disk and the memory is discarded or used for other 
applications. This allows having small physical memory which serves large virtual address space. For 
example, 64-bit virtual addresses allow the application to address memory intervals having size 264. 
Yet the real physical memory is normally much less.  

Virtual address may have some structure which needs to be mapped to the physical address structure. 
For example, earlier 16-bit processors manipulated addresses consisting of one 16-bit segment and 
one 16-bit offset stored in two registers. These two elements of the address produced 20-bit full 
address by means of 4-bit shift executed by the processor during access.  

Thus it is important to understand that the conception of indirect access, custom references and 
address space virtualization already exists at the hardware level. However, its specific feature is that it 
is already hard-coded into the processor architecture and cannot be changed. Indeed, it is not possible 
to introduce a custom virtual address space or a custom security mechanism for memory access. The 
main goal of our research consists in providing means for extending existing representation and access 
mechanisms.  

8.2 Software Level  
Custom mechanisms for indirection representation and access can be created at different software 
levels starting from operating system and ending with custom libraries. In this case various computer 
resources are represented by special identifiers which are not directly connected with their internal 
representation. Such identifiers are supposed to be used externally while internally they substitute a 
direct identifier and there is some mechanism that is responsible for their resolution. This approach 
makes representation and access even more indirect with respect to hardware level and hence it is 
more abstract/virtual and less efficient.  

Operating systems normally provide their own mechanisms for memory access. One of the most wide 
spread technique for memory management is global heap. The idea is that operating system provides 
the available memory for use by applications. Each element in the heap has its own unique identifier, 
called memory handle, which is however not directly connected with the corresponding address in 
memory. Memory handle is an identifier in a virtual address space created and managed by operating 
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system. In order to access a piece of memory represented by such a handle it has to be locked and 
resolved by the application. Operating system keeps a mapping from the space of memory handles 
into the memory addresses.  

In addition, operating system might also provide other types of containers with their own address 
spaces. For example, for small objects an application might use local heap. Another type of virtual 
memory is built for file access. In this case operating system provides the space of physical disk block 
for use by applications. However, it is done with the help of any address space where intervals of disk 
blocks are allocated as files. Each file is uniquely identified in this virtual space by its file handle. File 
handle are not directly connected with file blocks on disk, i.e., each time we need to access a file, the 
file system resolves its handle to the real location on disk.  

Custom mechanism for access indirection can be introduced at the level of middleware. The idea of 
middleware-based approaches consists in creating special software environment where a conventional 
program will run. In particular, such an environment offers a number of functions that are intended to 
support indirect representation and access. This special environment can exist and be accessible to 
running programs in very different forms, for example, as part of an operating system, an object 
container, a service, a dynamically or statically linked library etc. One wide-spread class of 
middleware is techniques for remote procedure calls. Examples of such middleware platforms are 
CORBA and RMI/EJB [Mon06]. These environments provide facilities for creating remote references 
and then making transparent method calls. As a consequence access to objects is even more indirect. 
Such middleware platforms may fit well to the purposes of one system but may be inappropriate for 
another system. In other words, it is yet another standard level of indirection which however exists 
separately from the program and hence cannot be easily adapted to the purposes of each concrete 
program.  

Methods of access indirection can be made part of a programming language infrastructure. An 
advantage is that the language run-time environment is closer to the programmer and hence it can be 
better controlled in comparison with the middleware-based approaches. One technology that can be 
used at this level consists in changing the behavior of a language from this very language. This allows 
the programmer to adapt this language features to the needs of each concrete program. These 
possibilities are provided by reflective environments and metaobject protocol [Kic91, Kic93]. 
Normally programming languages are defined in such a way that their behavior cannot be changed. In 
particular, we cannot change how objects are represented and accessed because it is hard-coded into 
the language and its environment. The reflective approach allows the programmer to change this 
environment and to change the way how the language constructs are interpreted.  

Another wide-spread approach to access indirection that belongs to this category consists in providing 
the mechanism of access interception at the level of the language run-time environment. In Java 
Virtual Machine this mechanism is called dynamic proxy [Blo00]. It exists also in C# where its 
functionality is implemented in the RealProxy class.  

8.3 Design Patterns  
Above we described non-language approaches which can be quite useful if indirect access is an 
auxiliary technique. However, if indirection is regarded as one of the primary mechanisms then it 
should be supported at the level of the programming language itself. This allows the programmer to 
express an arbitrary logic of indirection without restrictions imposed by the hardware, operating 
system, middleware or a library.  

The simplest approach to using a new mechanism in a programming language consists in following 
some discipline or pattern [Gam95]. One such wide-spread pattern for implementing indirect access in 
an object-oriented programming language is called proxy. Proxy is a special class that emulates the 
interface of the corresponding target class but inserts some intermediate functionality. (Proxy as a 
pattern should be distinguished from dynamic proxies as a built-in feature of run-time environment.) 
These intermediate functions of the proxy class are called before the target methods and hence they 
effectively intercept all target object method invocations. For example, if we need to indirect access to 
class Account we could define its proxy class AccountProxy implementing the same methods. 
The trick here consists in using proxy class instead of the target class, for example, we need to 
explicitly use class AccountProxy instead of class Account. Thus it is not a real interception but 
rather a normal sequence of method calls using static and explicit substitution. In other words, in the 
source context a reference to the proxy instance is created and hence the methods of the proxy are 
called when it is used. Then it is the task of the proxy to decide what to do if some its method has 
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been called. Normally, after some processing the corresponding target method is called. One 
disadvantage of this approach is that it requires significant manual support and is not very general. It 
is more a special technique or specific programming pattern rather than a programming paradigm. 
Here are other disadvantages of this approach:  

• If the target class changes then its proxies need to be updated because this pattern is a manual 
implementation of a discipline while transparency needs to be supported by a mechanism of 
the programming language.  

• One limitation is that a proxy is developed for one target class because it is aware of and 
explicitly simulates its behaviour. A true interceptor has to be able to intercept method calls 
to many different classes.  

• It is difficult to impose behaviour in a nested manner (creating a proxy for a proxy) because 
it requires even more manual support and such a program is even more sensitive to changes 
which have to be propagated over the source code.  

• This approach allows the programmer to implement indirect access but it does not provide 
means for modelling references which are passed and stored by value instead of native 
references. A reference to a proxy is still a normal native reference.  

Dependency injection (DI) and inversion of control (IoC) are patterns which are similar to context 
dependence in CoP. These patterns can be used to achieve loose coupling of components by injecting 
some resource or capability. In this case it is the architecture that links the components rather than the 
components themselves have to link themselves. In this sense it is also similar to plug-in architecture 
where components are linked via the available framework. In CoP, the architecture and services are 
provided by base concepts while child concepts play the role of components. In this case base 
concepts are responsible for many functional aspects of their children.  

8.4 Language Level  
The main goal of the research described in this paper consists in developing language means for 
describing indirect ORA function. An advantage of having language support is that the programmer or 
modeller can describe any desirable configuration of indirection which is required by the system 
without any restrictions from the available hardware/software/middleware environment. In this section 
we describe existing language-based techniques that can be used for this purpose.  

One well known technique which is intended to support indirect representation and access is referred 
to as smart pointers [Str91]. In C++ smart pointers are based on using the mechanism of templates 
(parameterized classes). The motivation for smart pointers is very similar to our motivation and 
consists in the desire to have a control over the process of object access which is absent in the case of 
native pointers. At the same time, it is desirable to have an illusion of direct access, i.e., smart pointers 
have to be analogous to native pointers when they are used for object access. In other words, we need 
to be able to store and pass smart pointers as if they were native pointers although they store some 
other data or functions.  

Smart pointer is an instance of a class that is developed to model references which are passed by value 
and provide access to an object. For example, we might define class MyReference and then 
instantiate it whenever we need to represent an instance of some target object. Here we already 
assume that such a class will serve many different target object classes by encapsulating general 
behaviour common to all of them. However, although the reference class has a generic form, this 
solution assumes that we still need to know the target class for the smart pointer to work properly. In 
other words, smart pointer classes are normal classes which are defined independently of the object 
classes they will represent but these target classes must be known at some moment. For this purpose 
the smart pointer class is parameterized by the name of the target object class using the mechanism of 
templates. This parameter is then used in implementing methods of the smart pointer class. When a 
new smart pointer has to be created we must provide the name of the target object class as the value of 
the parameter, for example, as follows:  

MyReference<Account> account(new Account());  
MyReference<Person> person(new Person());  

Thus in this approach we must specify both the target class and the reference class for each new 
instantiation, i.e., references class and object class are paired at the time of use for each individual 
variable. Another property is that an object could be represented by many different reference types 
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and one reference type can be used for many different object types. The real interception is performed 
by overloading the universal access operator (dot or arrow in C++). This means that each time a 
method is applied to a smart pointer this overloaded operator is called and then executes the 
intermediate actions. Normally it resolves the reference by finding the location of the target object and 
then calls the target method.  

The same idea of having a reference class parameterized by a target object class is implemented in the 
Transframe programming language [Sha]. The difference is that in Transframe, referentail classes 
have more support by the language, i.e., it is a built-in feature while in C++ it is pattern based on a 
more general mechanism of templates. In this language we can mark a class as intended to represent 
other objects as follows:  

class MyReference is referential { 
  private: 
    obj: ObjType;  
  public:  
    enter(path:char[]) { ... }  
} 

Notice that the referential class is still defined independently of any target object classes, i.e., it is a 
normal class with fields and methods. An just as for C++ smart pointers, when a new instance of an 
object has to be created we need to specify both the reference class and the target object class:  

account: MyReference of Account;  
person: MyReference of Person;  

The difference from smart pointers is that the parameterization is supported by the programming 
language rather than uses the general mechanism of templates. Below we list main properties of these 
two approaches and their difference from CoP.  

• Smart pointers and reference classes in Transframe use independently declared reference 
classes and object classes while in CoP these two classes are defined as parts of one more 
general construct (concept).  

• Smart pointers and Transframe assume that a new instance of an object requires two 
parameters: a reference class name and the object class name. Thus association between these 
two classes is established at the moment of creation. In CoP the association between the 
reference class and the object class is established within the concept at the moment of its 
declaration while creation is performed precisely as in OOP using only the target object 
class.  

• Smart pointers and references in Transframe can be viewed as explicit proxies because they 
are created as objects of certain class which are then used instead of the target objects. In 
CoP we have an illusion of working directly with the target object while the indirection is 
completely hidden.  

• Smart pointers and Transframe allow the programmer to implement simple substitutes passed 
by value but it is difficult to implement hierarchical (complex) references consisting of 
several segments. And it is even more difficult to implement objects consisting of several 
separate segments.  

• Smart pointers intercept method calls by overloading access operator. In CoP the interception 
of individual methods is performed by reference methods of the concept which have 
precedence over object methods and have an opposite overriding direction. General 
interception can be also implemented via continuation method.  

There exist also other language-based approaches to automating indirect access. For example, one 
general purpose method, called attribute-oriented programming, consists in using annotations or tags 
to mark up parts of the source code where additional intervention is needed. In particular, this allows 
us to make use of custom (external) source code processing units responsible for reference creation 
and interception of access.  

Another interesting approach, called language-oriented programming (LOP), consists in developing 
custom languages for each task or problem domain [War94, Dmi05]. In LOP the programmer could 
develop or use libraries of languages just as libraries of procedures or classes are used in procedural 
programming or object-oriented programming. In particular, such a custom language could support 
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functions of indirect representation and access. However, here we still have a problem of creating 
such custom languages.  

The next general approaches that could be used to implement different elements of the mechanism of 
indirect access consists in using mixins (abstract sub-classes) [Bra90, Sma98], subject-oriented 
programming [Sop] and multidimensional separation of concerns [Mdsc]. These methods allow the 
programmer to describe how behavioural granules have to be distributed throughout the system. 
However, they are not targeted at the problem of indirection of representation and access and provide 
only more or less convenient means for implementing different representation and access patterns.  

One of the most interesting recent approaches to programming is aspect-oriented programming (AOP) 
[Kic97]. Aspects describe intermediate functionality (and data) injected into the points in the program 
which are specified by means of regular expressions. Thus aspect can be viewed as a special 
programming construct that modularize intermediate functionality. An important property of this 
approach is that aspects know explicitly the points where the intermediate functions will be injected 
while the target classes do not know what other code will modify their behaviour (Fig. 17). Such a 
structure of dependencies between the module with the code to be injected and the modules where it 
has to be injected can be viewed as declaring all the target classes within the aspect (the target classes 
being unaware of this aspect). In this sense CoP is characterized by the opposite direction of the 
dependence. Namely, the module with the code to be injected (parent concept) is unaware of the 
points where it will be used (child concepts). What is similar between AOP and CoP is that method 
invocation is indirect and can trigger quite complex intermediate actions. However, the principles 
behind this indirection are quite different.  

 

Parent Concept Aspect  

Class Class 

AOP COP  

Child concepts declare their 
parent concept and hence 
the intermediate code and 
data they are wrapped into  

Aspect specifies the
target points where

the intermediate code
has to be injected Class Class 

Parent concept with 
intermediate code is 
unaware of the target points 
where it will be used  

Target points are unaware of 
the intermediate code that will 

be injected into them
 

Figure 17. Aspect-oriented programming vs. concept-oriented programming.  

 

The mechanism of dual methods in CoP is similar to super/inner methods of classes [Gol04] which is 
implemented in the Beta programming language [Kri83, Kri87, Kri89]. In particular, the inner 
methods are designed in such a way that they implement the same sequence of access as that in 
reference methods. However, the mechanism of super/inner methods is implemented as an addition to 
normal classes. Hence it can be viewed as an enhancement to OOP aimed at providing means for 
object protection from outside. In CoP, this behaviour is implemented using a completely different 
approach, namely, by means of concepts.  

The concept-oriented approach relates also to so called context-oriented methods which are aimed at 
bringing context dependence into programming [Cos05, Gas98, Rak02, Kea03]. These methods 
introduce languages constructs and mechanisms which allow the programmer to put objects in a 
context changing their behaviour at run-time. For example, in the ContextL programming language it 
is done by means of the keyword ‘in-layer’ while in CoP we use ‘in’ which generalizes inheritance 
and ‘super’ to access the context. The context-orientation also relates to a technology known as 
dependency injection.  

There exist also approaches to programming having the same name but which are actually based on 
very different notions and do not relate to our work, for example, [Voi92] and [Mcc99]. The 
mechanism of concepts exists also in generic programming where it is used to describe a set of 
operations supported by a type [Gre06].  
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If we use only references in CoP then we get an approach where only values are manipulated, i.e., any 
operation is applied to only one reference while references themselves are copied by value. Since 
objects are not in this approach, references are interpreted as data passed by value. In this sense it is 
similar to functional programming.  

8.5 Conceptual Approaches  
The question what is an object and what is its identity is of crucial importance in computer science. 
Although these questions are of approximately equal importance, the first question about the 
properties of objects has been paid much more attention and this direction has much more theoretical 
and practical results. In particular, two major paradigms – object-orientation and relational model – 
are almost completely devoted to the issues concerning object/entity modelling and do not provide 
similar means for identity modelling. Although general means for identity and access modelling have 
not been developed, this problem was extensively studied from philosophical and conceptual points of 
view.  

Very interesting model where objects and their identity are connected within one model was proposed 
by Kent [Ken91]. In this model scope is analogous to what we mean by space or context, i.e., it is 
assumed that everything exists in some scope. However, this scope is not a normal element – it is an 
additional construct in the model. In contrast, in the concept-oriented model context is just normal 
element, i.e., any element exists in some context and any context is an element. Scope in Kent’s model 
has the same role with respect to references as in our model: “A token belongs to a scope, which 
determines its status and meaning as a reference, based on the status and meaning of its corresponding 
symbol in that scope.” However, this role is assigned in an informal manner while in our approach it 
is a concrete mechanism implemented using special functions and obeying a concrete sequence of 
access.  

Another feature of the Kent’s model is that scopes are not intrinsically nested. Strictly speaking, it is 
noticed that scopes can be nested: “Scopes could be nested, but that’s beyond the concern of this 
paper.” Yet the nesting is not used a high level principle while in the concept-oriented model this 
relation is of primary importance, i.e., we assume that elements cannot exist without a hierarchy and 
without a parent element (context).  

The next property of the Kent’s model is that it does not have substitution relation among elements, 
i.e., objects have identities but it is not described how these identities are used for access. This means 
that identities have a mechanism of access as their intrinsic or primitive property. In our approach 
substitution relation is of the corner stones. It should noticed however that Kent’s model allows for 
synonyms.  

Another interesting model is proposed in [Wie95]. The authors provide a definition of an object 
identification schema, study its properties and compare with the existing identification mechanisms 
such as oids, keys and surrogates. In great extent this paper consolidates what was known at that time 
about object identification. However, it does not integrate the theoretical conceptual analysis of the 
role, applicability and limits of object identification into any practical framework or setting like 
programming approach or data model.  

This model uses the following elements:  

• Value space V consists of abstract entities called values. They are supposed to be 
unobservable and unchanging. For example, number 2 as a value is distinguished from its 
representations that may have different forms.  

• Symbol set S consists of symbols where each symbol is a type that may have many instances, 
called symbol occurrences.  

• Symbol occurrence is supposed to be an observable part of the world. For example,“E” is an 
occurrence of symbol ‘E’ representing character E as a value.  

• An object set O consists of all possible objects.  

In this approach naming schemes connect values and objects using some relation. A particular case of 
naming scheme is an oid schemes.  
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8.6 Concept Related Approaches  
There can be two approaches to programming based on using concepts defined as a pair of one 
reference class and one object class which are referred to as CoP-I and CoP-II. These approaches 
depend on the role played by these classes and their responsibility.  

CoP-I [Sav05] assumes that references of a concept represent objects of its child concepts (not this 
concept). For example, if we define concept Account in CoP-I then its references are intended to 
represent child objects such SavingsAccount or CheckingAccount. How then objects of this 
concept are represented? They are represented by references of the parent concept. For example, 
account objects could be represented by references of concept Bank. Thus concepts in CoP-I describe 
one space object with a set of internal references for representing internal objects. This space object 
knows references of its internal objects but does not know what kind of objects they will represent. 
What is important is that an object is responsible for managing a set of references.  

CoP-II [Sav07, Sav08] assumes that references of a concept represent objects of this same concept. 
Thus concepts in CoP-II describe one element which consists of one object and one reference. If we 
represent elements as a hierarchy then the difference between these two approaches can be represented 
as shifting of concept vertically (Fig. 18) so that its reference class and object class correspond to 
different parts of this hierarchy.  

Both approaches have some advantages and disadvantages. CoP-I has some very attractive features 
and on earlier stages of development we thought that the first approach is more perspective. Later on, 
when trying to remove some subtle problems we gradually switched to the second approach described 
in this paper.  
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Figure 18. Two approaches to concept composition: CoP-I (left) and CoP-II (right).  

 

There exist other concept-related approaches which use term concept for their constructs, mechanisms 
or general ideas. However, these approaches are not related to our method. For example, 
B. McConnell proposes an approach to programming which is also called concept-oriented 
programming [Mcc99]. This method uses DNS-like system which extends object-oriented 
programming languages. This system stores reusable code that can be loaded from programs as a 
library. An advantage is that programmers can write tiny programs that load these libraries.  

Other concept-related approaches include concept-oriented databases, concept-oriented logic 
programming [Voi92], concept programming and XL programming language.  
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9 Conclusions  
In the paper we proposed an approach to programming based on using concepts where a concept 
consists of two classes: a reference class and an object class. Both the constituents of concepts have 
their own members defining their individual structure and behaviour. What is important is that 
concept as a programming construct provides adequate means for modelling pairs of objects and 
references connected by inclusion and substitution relations.  

One of the main achievements of the proposed approach to programming is that references are 
completely legalized and made first-class citizens of the program along with objects. We completely 
abandon the idea of having entities (objects) and identities (references) as separate things and follow 
the principle that any element is a pair of an identity and an entity.  

An amazing feature of concepts is that they smoothly generalize classes and hence the concept-
orientation can be viewed as a generalization of the object-orientation which has been a dominant 
programming paradigm for many decades. This generalization is not restricted by the simple fact that 
concept can be obtained from class by attaching a reference class to it. It covers also such issues as 
inheritance and polymorphism which take new more general forms within CoP.  

Although in the paper we have focused manly on technical issues, this approach is not simply an 
additional mechanism or technique that can be implemented in existing programming languages. 
Rather, it has significant influence on the way how a complex software system is viewed and a 
computer program is being developed. Such a change is normally called a paradigm shift. In fact, this 
change of paradigm preceded the development of the described language means, i.e., first, we 
formulated general principles and then developed several versions of language mechanisms to support 
them. One of such changes is that programming in CoP is targeted at describing virtual address spaces 
for objects. Thus abstraction is reached by introducing new indirection levels using custom references 
and access procedures of the virtual address spaces. In contrast, existing approaches provide 
abstraction via new object classes and procedures.  

Another important notice about the proposed approach is that this research has been performed in 
close connection with the corresponding data modelling techniques because they share the main 
principles. Such an approach to data modelling is referred to as concept-oriented data model (CoM) 
[Sav05a, Sav05b, Sav06, Sav07a]. Thus concept-orientation is not restricted by programming 
languages and plays very important role in data modelling. The concept-oriented data model consists 
of two parts: logical and physical. Physical part is almost precisely what is described in this paper 
while logical part covers mechanisms which are specific to data modelling only such as data 
semantics and operations with data.  
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