
Technical Report RT0006, Institute of Mathematics and Computer
Science, Academy of Sciences of Moldova, 2007.

Two-Level Concept-Oriented Data Model
Alexandr Savinov

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova

str. Academiei 5, 2028 Chisinau, Moldova
Department of Computer Science III, University of Bonn

Römerstr. 164, 53117 Bonn, Germany

http://conceptoriented.com/savinov/

Abstract. In this paper we describe a new approach to data modelling called the
concept-oriented model (CoM). This model is based on the formalism of nested ordered
sets which uses inclusion relation to produce hierarchical structure of sets and ordering
relation to produce multi-dimensional structure among its elements. Nested ordered set
is defined as an ordered set where an each element can be itself an ordered set. Ordering
relation in CoM is used to define data semantics and operations with data such as
projection and de-projection. This data model can be applied to very different problems
and the paper describes some its uses such grouping with aggregation and multi-
dimensional analysis.

1 Introduction .. 2
2 One-Level Data Model ... 3

2.1 Labelled Ordered Sets... 3
2.2 Interpretations of Ordering Relation... 6
2.3 Representation of Labelled Ordered Sets ... 8
2.4 Operations with Elements... 10

3 Two-Level Data Model .. 11
3.1 Nested Ordered Sets ... 11
3.2 Syntactic Constraints .. 12
3.3 Multidimensional Hierarchical Space... 14

4 Operations with Model Semantics.. 16
4.1 Representing Model Semantics .. 16
4.2 Projection and De-Projection.. 19
4.3 Constraints and their Propagation... 21
4.4 Dependencies and Inference ... 25

5 Uses of the Model... 26
5.1 Query Language ... 26
5.2 Multi-Valued Properties ... 29
5.3 Grouping and Aggregation ... 30
5.4 Multi-Dimensional Analysis and OLAP... 33

6 Related Work.. 35
7 Conclusions .. 38
8 References .. 38

http://www.math.md/
http://www.asm.md/
http://www.informatik.uni-bonn.de/III/
http://www.uni-bonn.de/
http://conceptoriented.com/savinov/

1 Introduction
Currently there exist several major data models like hierarchical, network, relational, deductive or
multi-dimensional data model each of them having numerous variations or modifications. Each of
these major approaches emphasizes one or a few important phenomena or properties of data while
other mechanisms are derived or added as a secondary feature. For example, in the hierarchical model
the primary property of any data element is that it exists in a hierarchy. Obviously, the presence of
hierarchy is one of the fundamental properties which has much wider scope than only data modelling
and hence there is no doubt that support of hierarchies should be present in any good data model.
However, the problem is that the postulates of the hierarchical data model make it very difficult to
develop other very important mechanisms inherent to data modelling. One of such mechanisms is data
connectivity which is one of the primary concerns in the network model of data. However, this model
of data develops data connectivity features in the prejudice of other important mechanisms one of
which is a rich set of operations with data supported in the relational model. The main feature of the
relational model in this context is that it deliberately refuses to support any high level mechanism like
hierarchies or connectivity but provides a rich set of algebraic operations instead of that. The data
modeller in this situation can manually implement any desirable mechanism using a relational query
language. There exist also other generic approaches to data modelling like deductive or multi-
dimensional. However, they have the same problem of covering only a limited set of mechanisms and
hence they are good in one situation and bad in other situations.

In this paper we describe a new approach modelling which is called the concept-oriented data model
(CoM) and is based on the previous research results described in [Sav04, Sav05a, Sav05b, Sav06a,
Sav06b, Sav08a]. This model is part of the concept-oriented paradigm along with the concept-oriented
programming. The goal of this model consists in providing a limited set of basic principles that could
be applied to wide range of problems that are encountered in data modelling. In particular, this model
can inherently support hierarchies and this makes it similar to the hierarchical data model. It supports
connectivity of data elements and in this sense it is similar to the network model. Relational
operations are possible in this model and hence it can support rich query languages that can be used to
implement a complex logic of data selections and transformations. The concept-oriented model
supports inference and constraint propagation – the main features of deductive data models. CoM is
inherently multi-dimensional data model which allows the modeller to think in terms of dimensions
and in this sense it covers the problems normally described using multi-dimensional models and
OLAP techniques.

Although CoM can be viewed as an integrated model combining most important features and
mechanisms existing in other models it is not simply a sum of available approaches. Moreover, it does
not use the existing approaches for defining its principles at all but rather derives the existing
mechanisms from a small set of new general principles. In other words, CoM postulates a small
number of general principles independently of the existing models and after that it shows how these
principles can be used to model various data modelling patterns and to simulate existing approaches to
data modelling.

One of the main concept-oriented postulates is the principle of duality. This principle means that in
the concept-oriented paradigm any element consists of two parts, called identity and entity. Hence we
describe and manipulate pairs rather than single elements. The two sides of any elements are separate
but on the other hand compose one whole. Both identity and entity are equally important in data
modelling and we cannot ignore any of them. In particular, both identities and entities have structure,
behaviour and connections which have to be described by the data modeller using dual facilities
provided in CoM.

One consequence of the principle of duality is that data modelling is broken into two orthogonal
directions, called identity modelling and entity modelling. Identity modelling is intended for
describing how elements are represented and accessed. The structure of identities is referred to as
physical structure of data model and it is assumed that all elements exist within a hierarchy. Entity
modelling is intended for describing data semantics which depends on how elements (entities) are
connected with other elements. The structure of entities is referred to as logical structure and it has a
multi-dimensional form where any element has a number of parents and a number of children.

Physical structure of identities is based on inclusion relation while logical structure of entities is based
on ordering relation. In this sense data semantics is based on the formalism of ordered sets. In other
words, if elements are ordered in one way then they have one meaning and if this ordering is changed
then the meaning is also changed. In order to combine the hierarchical nature of identities and multi-

 2

dimensional nature of entities we generalize the formalize of ordered sets and propose to use so called
nested ordered sets. The main difference of this new approach from conventional ordered sets is that
sets are not flat but rather have a hierarchical structure where any element of the ordered set can also
be a set with its own elements having some ordered structure. Using ordering relation and nested
ordered sets is an original feature of the concept-oriented model and to the best of our knowledge this
approach has not been exploited previously in the research literature. Thus an interesting research
challenge is whether it is possible to develop a full-featured data model which is general enough to
cover most applications and data modelling patterns.

This paper is structured as follows. In Section 2 we shortly describe what ordered sets are and define
one-level concept-oriented data model that is based on this formalism. In Section 3 we introduce the
notion of nested ordered set as a basis for the two-level concept-oriented data model. Section 4 is
devoted to more thorough investigation of the two-level concept-oriented model including operations
with data semantics and representation mechanisms. Section xx describes how this model can be used
to solve typical data modelling tasks. Related work is discussed in Section 5 and Section 6 is the
conclusion.

2 One-Level Data Model

2.1 Labelled Ordered Sets
Let us assume that there is a set consisting of a number elements: },,,{ LcbaO = (Fig. 1 a). For
example, it could be a bibliographic database consisting of three tables, BIBL = {Author,
AuthorTitle, Title}, where one element is one table (Fig. 1 b). Or it could be one table
consisting of records, Author = {"Immanuel Kant", "Rene Descartes",
"Euclid"}, where one element is one author (Fig. 1 b). Here we do not make any assumptions on
the structure and nature of the elements, i.e., all the elements including the set O are things without
any internal structure. The only structural fact (except that these elements exist) is that one element,
set O, includes other elements (dotted lines in Fig. 1). We will refer to such an inclusion as
physical or hard.

K,,, cba

It is important to understand that before elements can be studied they need to exist and the fact of
existence is expressed via their identity. Identity modelling is one of the most important issues in the
concept-oriented approach which is orthogonal to entity modelling. However, in this paper the
problem of identity modelling is not discussed (cf. [Sav05c, Sav07a, Sav07b, Sav08b, Sav08c] for
more details on how identity can be modelled in programming). Therefore for simplicity we assume
that elements are identified using mathematical symbols. Each symbol is unique and has meaning only
in the context of its (physical) set. In particular, one and the same symbol can be used to identify
elements in different sets. Without this physical inclusion hierarchy we actually have no structure, no
meaning, no dependencies and no other non-trivial properties. It is simply a number of non-related
elements. For example, table Title is not related to table Author because the only fact we know is
that these two elements exist (in set BIBL).

b

c

a

AurthorTitle

Title

Author O BIBL
Kant

Descartes

Author

a) b) c)
Fig. 1. A physical set without any logical structure.

If we have a set of isolated and unrelated elements the next question is how can we bring a structure
into it, which can be then used for modelling by representing data semantics? In other words, we need

 3

some formal way for structuring a physical set which is general enough to represent typical situations
and patterns accepted in data modelling. The main distinguishing feature of CoM is that for this
purpose it uses the mathematical notion of ordered set.

Informally, elements of a set are ordered if we can compare them, i.e., for a pair of elements we can
say if one of them is less than the other. To compare elements a binary relation is used which called
ordering relation. Depending on its properties we get different kinds of ordered sets.

Partial order is a binary relation ‘ ≤ ’ on elements of the set },,,{ KcbaO = satisfying the following
properties:

[Reflexivity] Oa∈∀ aa ≤

[Antisymmetry] Oba ∈∀ , baabba =⇔≤∧≤)()(

[Transitivity] Ocba ∈∀ ,, cacbba =⇒≤∧≤)()(

Then a partially ordered set is a set with partial order established on its elements.

One of the most interesting structures studied in the theory of ordered sets is that of a lattice which is
an ordered set satisfying the following additional criterion:

[Lattice] Any two elements Oba ∈, have both a least upper bound (supremum)
and a greatest lower bound (infimum).

),sup(ba
),inf(ba

In mathematics a least upper bound is associated with a generalized product and in different branches
has different notation such as (product of two elements), ba ⋅ ba ∧ (conjunction of two elements),

 (intersection of two elements). A greatest lower bound is thought of as a generalized sum and is
denoted as (sum of two elements), (disjunction of two elements), (union of two
elements).

ba ∩
ba + ba ∨ ba ∪

We also assume that a lattice has two special elements. The greatest element g is greater than or equal
to any other element of the set: Oa∈∀ ga ≤ . The greatest element is also called top and denoted as
T. The least element l is less than or equal to any other element of the set: Oa∈∀ . The least
element is also called bottom and denoted as

al ≤
⊥ .

An element which is greater than this element is referred to as its super-element. An element which is
less than this element is referred to as its sub-element. If ba ≤ then a is a sub-element for b and b is a
super-element for a. In other words, sub-elements are less than this one, and super-elements are
greater than this element.

It is convenient to represent an ordered set as a graph where elements are nodes and partial order is
represented by directed edges between them. Namely, one edge is an arrow from a smaller element to
a greater element. Additionally, we will position a greater element above smaller elements. For
example, if then an arrow will lead from node a to node b and a is drawn under b. Thus all
arrows in such a graph are upward directed and lead from sub-elements to super-elements.

ba ≤

An example of an ordered set is shown in Fig. 2 a where element a is less than both b and c and hence
a is a sub-element for b and c (while b and c are its super-elements). Using meaningful names for
elements we might represent a model as shown in Fig. 2 b. Here table AuthorTitle is a sub-
element of both Author and Title. We see that a and AuthorTitle in Fig. 2 a-b are bottom
elements but top element does not exist. Therefore we simply add it to the set as a special formal
element as shown in Fig. 2 c.

In CoM a modified approach to representing ordered sets is used. The difference is that each element
of the ordering relation has a unique name which distinguishes it from others. This means that each
edge of the ordered set graph is labelled and then it is referred to as a labelled ordered set. Such a
modification has the following effect. Any two elements can be connected by more than one edge in
the ordered set graph having different names. In this case specifying that one element is less than
another is not enough. It is necessary to also specify the name(s) of the corresponding ordering
relation element(s) as a parameter.

At the same time we do not permit loops in the ordered set, i.e., there is no a sequence of edges in the
graph leading from an element to this same element. Consequently, we will use ‘<’ (less than) for

 4

denoting ordering relation instead of ‘ ≤ ’ (less than or equal to). If two elements are directly
connected in the labelled ordered set graph by edge x then we write it as follows: . ba x<

a

c

b

AurthorTitle

Title

Author O BIBL

a= ⊥

c

b

O

T

a) b) c)
Fig. 2. An example of ordered set.

This modification allows us to introduce several definitions important for the whole approach. An
edge x between two elements a and b, , is referred to as a (simple or local) dimension of the
source element a. Given dimension x its source is denoted as

ba x<
ax =)Src(. The target of a dimension is

referred to as a domain and is denoted as bx =)Dom(. (Notice that this notation is accepted in data
modelling but differs from mathematics where domain is defined as the source of a mapping.) We will
also denote the target (domain) by the dimension itself, i.e., symbol x can denote both the dimension
itself and (for simplicity) the element b where it ends.

The number of dimensions of an element is called its dimensionality or intension. i.e., dimensionality
of element a is the power of the set . Thus dimensionality is a characteristic of an
element which is equal to the number of upward arrows starting from this element and leading to its
super-elements. Notice that many dimensions can lead to one super-element and this is precisely why
we introduced labels. For example, two dimensions x and y can start in a and end in b. In this case
dimensionality of element a is 2.

})Src(|{ axx ii =

The number of dimensions that end in this element is referred to as its (simple or local) cardinality or
extension, i.e., cardinality of element b is the power of the set . Thus cardinality is
equal to the number of incoming arrows while dimensionality is the number of outgoing arrows.
Notice again that a sub-element can be counted many times if there are many dimensions leading to
this element.

})Dom(|{ bxx ii =

A complex dimension of element a is a sequence of local dimensions (separated by dots) where first
dimension belongs to a and each next dimension starts where the previous dimension ends:

, and where kxxx ... 21 L ax =)Src(1)Dom()Src(1−= ii xx ki ,,3,2 K= . An inverse dimension or
sub-dimension is a complex dimension with the opposite direction, i.e., it is a sequence of simple
dimensions leading from this element down to some its direct or indirect sub-element: .
The number k of local dimensions in a dimension or inverse dimension is referred to as a dimension
rank. So a simple dimension has rank 1. In an ordered set graph, a complex dimension is an upward
path from this element to some its direct or indirect super-element. An inverse dimension is a
downward path from this element to some its direct or indirect sub-element.

12... xxxk L

The number of dimensions from this element to top element is referred to as a primitive
dimensionality of this element and the number of inverse dimensions to bottom element is referred to
as a primitive cardinality. A full or canonical dimensionality of an element is the number of
dimensions to all its direct or indirect super-elements. A full or canonical cardinality is the number of
inverse dimensions to all its direct or indirect sub-elements.

The same characteristics for the whole labelled lattice are those defined for top and bottom. This
means that the lattice primitive/canonical dimensionality is that of bottom element. And the lattice
primitive/canonical cardinality is that of top element. In graph terms, the lattice dimensionality is the

 5

number of paths leading from bottom to top and cardinality is the number of paths from top to bottom
(these numbers are apparently equal).

Direct sub-elements of top element are referred to as primitive elements. We will assume that
primitive elements have only one dimension leading to top element.

2.2 Interpretations of Ordering Relation
Formally, the only thing that is needed to define a concrete one-level concept-oriented data model
consists in specifying some labelled lattice. In other words, we need to define a set of data elements
and then order them. This lattice is then considered a full formal specification of the model.

The main practical question is why a labelled lattice can be viewed as a model of data, i.e., how the
ordered set can be meaningfully interpreted in a way that can be though of as a concrete data model?
Without such an interpretation the labelled lattice (and any other formal specification) will still play a
role of mathematical notation, technique or formalism rather than a data modelling approach.

In this section we describe the following main interpretations of the ordering relation which can be
directly used in data modelling (Fig. 3):

1. General-specific relation

2. Conjunction-disjunction (logical)

3. Collections-combinations (grouping type)

4. Object-attribute-value (characterization)

more specific

more general
∧ ∧

∨ ∨
disjunction

comjunction

colleciton

combination

< >

{ }
object

value

attribute

a) b) c) d)
Fig. 3. Interpretations of ordering relation.

Frequently data elements of the problem domain can be characterized as more general and more
specific with respect to other elements. For example, in OOP such a description is used to build a class
hierarchy where a class is thought of as more specific than its base class the behaviour of which it
inherits. In the concept-oriented programming it is inclusion relation that expresses the same
semantics of specific-general. The same approach is used in multidimensional databases and OLAP
based on describing different levels of details, i.e., more detailed levels have more specific elements.

Ordered sets can be easily used for representing general-specific hierarchy if we assume that an
element is more general than its sub-elements and more specific than its super-elements (Fig. 3 a):

Oba ∈∀ , if then a is more specific than b and b is more general than a ba <

Thus arrows in the ordered set graph lead from a more specific to a more general element. For
example, if there exist two elements in the problem domain, Figure and Circle, and we know that
the second one is a special case of the first one then we write it as follows: Circle<Figure (circle
element is less than figure element). If further we find an element which is even more specific than
Circle then it is positioned under its parent super-element.

Logical methods are widely used in computer science for problem domain description and analysis.
This approach assumes that we can make some propositions about elements which can be true of
false. In order to build complex propositions logical connectives are used. For example, if we know
that an element must be Blue or Heavy then we represent this fact using the following logical
proposition: (Blue Heavy). Ordering relation can be interpreted as logical propositions using ∨

 6

the assumption that an element is equal to a conjunction of its super-elements and a disjunction of its
sub-elements (Fig. 3 b):

Ocba ∈∀ ,, if and ba < ca < then cba ∧=

Ocba ∈∀ ,, if and then ba > ca > cba ∨=

In the ordered set graph this interpretation can be easily represented if all outgoing arrows are thought
of as connected by conjunction while all incoming arrows are connected by disjunction.

In the process of data modelling it is very important to have appropriate means for grouping. For
example, we might say that some persons belong to a group of employees working on this project.
And here again ordering relation can be used to interpret elements as one logical group. However, we
distinguish two types of groups called (logical) collections and combinations. A collection is a group
element consisting of its sub-elements. A combination is group element consisting of its super-
elements. To distinguish collections and combinations, their elements are written in curly and angle
brackets, respectively (Fig. 3 c):

Ocba ∈∀ ,, if and ba < ca < then 〉〈= cba , - combination

Ocba ∈∀ ,, if and then ba > ca > },{ cba = - collection

Collections are analogous to conventional sets of elements while combinations are analogous to
records, objects or tuples. Thus an element can be thought of as a set consisting of its sub-elements.
On the other hand the same element is an object, record or tuple combining in the fields its super-
elements.

One of the most wide-spread methods of description is based on using variables which may take
different values and characterize the object. In this approach, various phenomena and events are
thought of as characterized by some properties or having certain states. For example, an object can be
characterized as having blue colour and heavy weight where blue and heavy are values taken by the
corresponding characteristics. An ordered set can be interpreted in terms of object characteristics
using the assumption that super-elements are values characterizing this element while sub-elements
are objects characterized by this element (Fig. 3 d):

Oba ∈∀ , if then b is a value characterizing object a ba <

According to this interpretation, more specific sub-elements are characterized by their more general
super-elements and vice versa super-elements characterize sub-elements. An important property here
is that an element can be simultaneously an object (for its super-elements) and a value (for its sub-
elements). So we do not have a predefined distinction between objects and values. We cannot say if
element Blue is a value of some variable or it is an object. For its sub-elements it is a value while for
its super-elements it is an object.

Ordering relation allows us to say that some element is characterized by another element. However,
values are normally specified in the context of the corresponding variable, which is considered an
attribute of one or many objects. In other words, usually we do not say that an object is blue but rather
say that the colour of this object is blue where colour is the name of the property. In this case the
object-value setting is extended to the object-attribute-value setting. The role of variables or attributes
is played by labels of the ordered set, which are named elements of the ordering relation.

Oba ∈∀ , if then ba x< bx = for object b or shortly bxa =.

We say that attribute x of object a takes value b. As we already mentioned, value b itself may have its
own attributes taking some values and so on till top.

We described four major interpretations of ordering relation but there may be also other
interpretations or their minor variations. It is important that formally all these interpretations are
equivalent because we use only one source representation as a labelled ordered set. Having different
interpretations is useful in model design because this allows us to apply different modelling
techniques. For example, we know that a value is always more general than the object it characterizes
and a number of values characterizing one object are actually combined using conjunction.

 7

2.3 Representation of Labelled Ordered Sets
There are many ways how an ordered set can be represented. For example, it can be written as a set of
edges of the ordered set graph where each element is a triple consisting of a sub-element, label name
and a super-element. If then the triple representing this element of the order is written as

. This approach is similar to that used in entity-attribute-value model (EAV) and RDF model.
Its main property is that by using triples we actually introduce new elements of representation which
require their own representation facilities. In other words, the question is how to represent the triples
used to represent ordering relation.

ba x<
〉〈 bxa ,,

This is why we use another approach where elements of the ordered set represent also the order. This
approach essentially means that any set is inherently an ordered set, i.e., ordering relation is built into
any normal set. In other words, if there is a set then it has also an order between its elements as a built-
in property. In particular, normal set (without order) is a special case where order is degenerated. Such
an approach is a consequence of our general assumption that anything is represented by ordered sets
and ordering relation plays primary role in this approach. In terms of the separation between physical
and logical structures any set is represented using physical structure while the order is represented
using logical structure.

In order to represent an order we need to provide additional characteristics for each element which are
defined via other elements from this set. In other words, in addition to an identifier, an element gets
some logical characterization which is a specification of the local order. We assume that an element
can be defined via its neighbour elements using at least two alternative ways: either by enumerating its
super-elements, or by enumerating its sub-elements. Since super-elements are interpreted as more
specific or base elements which exist before their sub-elements, it is more natural to use the first
alternative where an element is defined via its super-elements.

More specifically, we will assume that each element of an ordered set is a combination of its super-
elements:

},,{ KbaO = , , , … where , ,… 〉〈= K,, 21 aaa 〉〈= K,, 21 bbb iaa < ibb <

In order to distinguish super-elements within the definition they are be labelled by dimension names:

},,{ KbaO = where , , … 〉〈= K,:,: 2211 axaxa 〉〈= K,:,: 2211 bybyb

This allows us to use one and the same super-element more than once. Such repeating super-elements
are distinguished by dimension names which are supposed to be unique for each element. Notice that
one element now has two constituents, called identity and entity. Identity is the element name while
entity is a combination of super-element identities. An ordered set is represented as a collection of
such identity-entity pairs.

Such a choice of representation is not simply a convenience but reflects a deeper assumption that the
fact of writing a number of elements together in one place as a combination defines a new element. In
other words, in order to define a new element we need to somehow bring together in one location
information on (references to) its constituents (super-elements). Such a combination can be then
thought of as an object consisting of a number of fields or a record consisting of a number of column
values. It is important however that we cannot separate these values (super-element identities) and
store them in different locations because we will loose their unity along with the possibility to
interpret them as one whole.

An advantage of such a representation is that elements are defined via elements from this very set, i.e.,
we do not have elements with some special role. However, a disadvantage is that it is difficult to
compare elements because they are defined locally via direct super-elements. In other words, each
element has its own local set of dimensions and in this sense they are incompatible. For example,
given two arbitrary elements a and b we would like to understand how they are related. Such a
possibility to relate and compare elements is very important in data modelling. For example, if it turns
out that a is a super-element of b then it can be viewed as its characteristic, attribute value or more
general representation. Thus we need a representation or interpretation where elements of the ordered
set could be viewed as points in one common space with the structure induced by the ordering
relation.

In order to build such a space let us remember that one element is represented as a combination of its
super-elements where each super-element can be interpreted as an attribute value (interpretation 4 in
section 2.2). This attribute value can be interpreted as a coordinate taken by this element along some

 8

dimension or axis. For example, element has coordinate along dimension
 and coordinate along dimension and so on. This can be written using dotted notation as

follows: , , … The only problem is that these dimensions or axes do not have
normal domains from where we could choose possible values (it is a consequence of having one-level
model). In this case we can assume that an element has actually the following binary choice: either it
has a super-element in its definition (true) or it does not (false). In the former case the super-element
is explicitly written in its definition as a coordinate along this dimension (actually the only possible
coordinate). In the latter case the super-element simply does not appear in the definition. If

 then we say that this element is present along n dimensions or axes
and is absent (not visible) along other possible dimensions. The absent coordinates are simply omitted
and we write only the coordinates which are present. If we need to explicitly write the absent super-
element then it can be done using a special symbol null which is actually a denotation of absence
(nothing here). Notice that null is not an element but a marker used to denote the absence of any
element along some dimension.

〉〈= K,:,: 2211 axaxa 1a

1x 2a 2x

11. axa = 22. axa =

〉〈= nn axaxaxa :,,:,: 2211 K

Another important observation is that the definition of an element via its super-elements is actually
recursive because the super-elements may have their own definitions. In this case even if this element
has one and the same local definition, its relation to other elements may change because its super-
elements change their definitions. Thus for relating elements it is important to describe them in
common terms which do not change in time.

Let us now consider how elements of an ordered set can be represented as points of one space Ω with
a common set of dimensions. This space consists of all primitive dimensions of the labelled lattice:

, where are primitive dimensions, i.e., dimensions with the domain in some
primitive element (a direct sub-element of top element). As we described above a primitive domain
here is supposed to have two possible values: either the primitive element itself or nothing (null or
false). Space Ω is then a hypercube where one point is a combination consisting of some primitive
elements (a subset of primitive dimensions). An ordered set can be represented as a table with the
header corresponding to primitive dimensions and rows corresponding to its elements. We say that the
header describes the model syntax while the rows represent its semantics. For example, let us consider
an ordered set shown in Fig. 4. It consists of 8 elements and has 6 primitive
dimensions (so it is a 6 dimensional model). Hence the table with the primitive semantics will have 6
columns. Each column corresponds to one path from bottom to top as indicated in its header in Fig. 4
by enumerating elements along the primitive dimension path. For example, the first primitive
dimension goes through the elements .

nppp ×××=Ω K21 ip

beeet ,,,,, 621 K

1p teeb ,,, 41

b= ⊥

e4 O

t=T

e6

e1 e3

6 primitive dimensions

 p1

b.e1.e4.t
p2

b.e1.e5.t
p3

b.e2.e4.t
p4

b.e2.e6.t
p5

b.e3.e5.t
p6

b.e3.e6.t

r61 1
r62 1

r31 1 1

b 1 1 1 1 1 1

e2

e5

Fig. 4. Primitive syntax of one-level model.

Rows are built from elements of the ordered set, i.e., depending on the number of elements and their
definition we get one or another set of rows which represent primitive semantics of this syntax. Each
element produces many rows. The number of rows for an element is equal to the number of its sub-
dimensions leading to bottom element. Equivalently, the number of rows produced by one element is
equal to the number of paths leading from bottom to this element. If element has m primitive sub-
dimensions , then it produces m rows ,

ie

ijf mj ,,2,1 K= ijr mj ,,2,1 K= . For example, element in

Fig. 4 has only one sub-dimension and hence it is written as one row (the first index of the
3e

3.eb 31r

 9

row symbol is the element number from which it is produced). Element has two sub-dimensions
 and , and hence it produces two rows and .

6e

62.. eeb 63.. eeb 61r 62r

The cells of rows are either 0 or 1 and define the semantics. These values depend on the primitive
super-dimensions of the element that produced this row. Formally, if element has n primitive
super-dimensions , , and m primitive sub-dimensions , then it

produces m rows , , where one row corresponds to one sub-dimension . This row

 has n columns taking value 1, , which are obtained by concatenating super-dimensions

 to the sub-dimension (other columns take value 0):

ie

ikd nk ,,2,1 K= ijf mj ,,2,1 K=

ijr mj ,,2,1 K= ijf

ijr 1=ijkp

ikd ijf

〉〈= inijiijiijij dfdfdfr .,,.,. 21 K

So each row each is a combination of 1s which correspond to primitive dimensions (columns of the
table) where each primitive dimension has prefix and suffix . In Fig. 4 element produces

one row because it has one sub-dimension . Its semantics is determined by its two primitive
super-dimensions and . If we concatenate the sub-dimension with these two super-
dimensions then we get two primitive dimension paths leading from bottom to top and

. These are two last columns in the table which are set to 1 (so it is a two-dimensional
element). Element produces two rows and which both have one super-dimension. If this
super-dimension is concatenated with the corresponding sub-dimension the we will get primitive
dimensions and , respectively. Hence we set 1 in these columns for these rows.

ijf ijd 3e

31r 3.eb
tee .. 53 tee .. 63

teeb ... 53
teeb ... 63

6e 61r 62r

teeb ... 62 teeb ... 63

2.4 Operations with Elements
There are two operations that can be applied to individual elements by producing a new element with
different dimensions: reduction and extension. The operation of reduction removes one dimension
from the representation of this element. If the original element has n dimensions,

, then the reduced element denoted as with the removed last
dimension has dimensions:

〉〈= nn axaxaxa :,,:,: 2211 K nxa)(→

nx 1−n

[Reduction] 〉==〈=→ −− 1111 ,,)(nnn axaxxa K

Essentially, reduction means that we simply remove one super-element from the definition of this
element. Since many super-elements can be used in the definition we use dimension names which are
unique.

The operation of extension has the opposite form and adds a new dimension to the definition of this
element. If the original element has n dimensions, , then the extended
element denoted as with the added dimension has

〉〈= nn axaxaxa :,,:,: 2211 K

1)(+← nxa 1+nx 1+n dimensions:

[Extension] 〉===〈=← +++ 11111 ,,,)(nnnnn axaxaxxa K

Extension requires also a parameter which specifies the value of the new dimension. In many
cases we can assume that it is null which means that the extended element is equivalent to the original
one and only formally can be viewed as having the added dimension. However, it is still useful
because this allows us to compare elements with different dimensions by formally adding new
dimensions.

1+na

To compare elements represented as combinations of their super-elements we use the following
definition of the induced specific-general relation. Element a is more specific (and less general) than
element b iff they have the same dimensions and each super-element of b is present also in a. If we
assume that marker null is more general than any other concrete element, anulla >∀ , then it can be
written as follows:

[Specific-general] ba < ⇔ , , ii ba < 〉==〈= nn axaxa ,,11 K 〉==〈= nn bxbxb ,,11 K

Notice that this relation is derived from the definition of elements as combinations of other elements.
In other words, if we have a set of records consisting of values then we can induce such a relation on

 10

this set. Informally, more general records have more null values than more specific records. Most
specific records do not have nulls in their definition and consist of only concrete super-elements. Such
records are visible from any dimension.

For example, let us assume that table with primitive semantics shown in Fig. 4 is written as a primary
representation rather than produced from an ordered set. The above formulated rule allows us to
induce an order between its rows. In particular, row is more specific than rows and
because it has 1s where other rows have 0. Row b consists of all 1s and hence it is more specific than
any other row. This rule allows us to induce an order on a set of elements with coordinates. However,
it is important that the produced ordered set will not be equivalent to the original ordered set just
because they have different sets of elements.

31r 61r 62r

3 Two-Level Data Model

3.1 Nested Ordered Sets
In the previous section we described a one-level model which however has a limited practical use. The
main purpose of describing this simplified model consisted in introducing basic notions and
definitions concerning ordered sets and demonstrating how this formal setting can be used for data
modelling. In particular, we described how ordering relation can be interpreted in conventional terms
widely used in data modelling.

One-level data model is very simplified and is not very convenient for describing real world problem
domains so it can be hardly used in practice in its direct form. The main problem is that it provides too
much freedom for ordering elements while the elements themselves have one and the same status.
Indeed, it is very impractical to view a huge number of elements from the problem domain as one big
ordered set where an element may have almost any super-elements in its definition without
constraints. So the designer has to express the rich variety of real world problems by ordering
elements from one big set. In this situation we normally want to introduce some kind of special roles
with the corresponding constraints or groups of elements or to apply another kind of structuring
facilities.

One of the most widespread practices in data modelling consists in using dedicated groups of elements
which can be used only in some context for some purpose. Such groups can be used to restrict the set
of elements that can be chosen as super-elements in the definition of another element. In conventional
terms a group is interpreted as a domain or class of elements. In such an approach, elements gain an
additional structure which is orthogonal to that induced by the ordering relation. This structure
assumes that an element has a single parent element which is its permanent group or container and it
may have many child elements for which it is a group. This inclusion relation is responsible for
describing physical structure of the model while the ordering relation is responsible for describing its
logical structure. In Fig. 5 physical structure of elements spreads horizontally from the root element
on the left to leaf elements on the right. Orthogonal logical structure spreads vertically where each
element may have a number of super-elements positioned over it and a number of sub-elements
positioned under it.

Physical structure is precisely what is studied in the concept-oriented programming (CoP) where it
may have any depth and is modelled by a special programming construct, called concept. Physical
structure plays a very important role in data modelling. In particular, this distinction between physical
structure and logical structure breaks the whole data modelling area into two branches: identity
modelling and entity modelling, respectively. In other words, physical structure of the model is where
we describe properties and behaviour of identities while logical structure is responsible for that of
entities. Yet, even though physical structure plays such an important role, we do not focus on it in this
paper and aim at describing only logical structure. We describe only what is physical structure but to
not touch the issue how it can be modelled.

In physical structure, it is assumed that an element is defined as consisting of other elements which in
turn may include their own child elements and so on: . On the other hand it is still
assumed that elements may have a number of super-elements stored as a combination:

. Thus an element has actually two definitions: one physical and one logical.
One difference between them is that physical structure is permanent and we cannot change the parent
of an element which is assigned only once. This assumption is needed because physical structure
describes identity of elements which is assumed to be constant, i.e., an element cannot change its

},,{ 21 Kcce =

〉==〈= K,, 2211 exexe

 11

identity. In contrast, logical structure may change in time so that an element has one set of super-
elements now and another set of super-elements later.

a

c

b

AurthorTitle

Title

Author

BIBL

a

c

b

Physical structure of inclusion

Lo
gi

ca
l s

tru
ct

ur
e

of
 o

rd
er

in
g

re
la

tio
n

Fig. 5. Nested ordered set.

Let us now assume that there is an element which physically belongs to some parent and logically is a
combination of some super-elements. The most important new effect of such a definition is that super-
elements do not necessarily belong to one set. In other words, if in one-level model super-elements
belong to the same set as this element, then in the case of physical structure super-elements may
belong to different sets. Such a structure is referred to as a nested labelled ordered set and is formally
defined below. We still assume that super-elements in logical structure have unique labels and there
exist one top element and one bottom element. A nested labelled ordered set is defined as follows:

[Nested labelled ordered set] A nested labelled ordered set is a number of elements where

• each element is defined as consisting of two parts ,
i.e., an element is:

〉==〈= KK ,,},,{ 221121 exexcce

(i) [physical structure] a collection of child elements , and },,{ 21 Kcce =

(ii) [logical structure] a combination of super-elements 〉==〈= K,, 2211 exexe

• physical structure is a tree where an element has a single permanent parent and there is
one root element R,

• logical structure of elements is a labelled ordered set.

If logical structure of the nested ordered set is defined as a labelled lattice (additionally, there are one
top and one bottom elements) then this set is referred to as a nested labelled lattice. Elements of a
labelled ordered set are hierarchically grouped however the groups are normal elements which are also
ordered. For example, in Fig. 5 elements Title, Author and AuthorTitle (physically) belong
to the root element BIBL and hence we write: BIBL={Title, Author , AuthorTitle}.
These elements can be ordered by storing a combination of their super-elements (shown as upward
arrows). What is new in nested sets is that elements themselves can contain child elements which also
can be ordered. For example, element Title consists of 4 ordered elements and one of these 4
elements consists of 3 ordered elements.

3.2 Syntactic Constraints
In a nested labelled ordered set there are no constraints on logical structure except for those specified
in the definition. Essentially, elements may have any super-elements provided that there are no cycles.
In particular, an element may have super-elements from any level including its parents and children.
Here again just as in one-level domain we get two much freedom while the main role of a data model

 12

consists in providing mechanisms for imposing structural constraints on its elements. In other words,
we have introduced physical structure for restricting the use of elements in logical structure. So if
element may still have any super-elements then it does not make much sense to have physical
structure. In this section we introduce a mechanism of syntactic constraints which allows us to use
physical structure to effectively restrict possible logical structures.

The main idea of the mechanism of syntactic constraints is that possible super-elements depend on the
parent of this element. So the position of the element in physical structure determines which logical
definition it may have and this is how physical structure constrains logical structure. Formally this
principle is formulated as follows:

[Syntactic constraints] If
then (directly or indirectly),

〉〈=∈〉〈= nn CCCCeeee ,,,,,, 2121 KK

ii Ce ∈ ni ,,2,1 K= .

This principle means that if we have an element e belonging to its physical parent
 then the question is how can we define its constituents, i.e., what other elements

 can be chosen as its super-elements. Without syntactic constraints we can choose any
super-elements provided that no cycles appear in the logical structure, i.e., (directly or
indirectly super-elements belong to root element). In the presence of syntactic constraints, the parent
element C is supposed to be already defined via its super-elements: .
This definition then is taken into account when defining child elements of C. Namely, we assume that
any member may take its super-elements only from within elements . Notice that
super-elements of e must belong to super-elements of C directly or indirectly.

〉〈= nCCCC ,,, 21 K

neee ,,, 21 K

Rei ∈

〉〈= nn CxCxCxC :,,:,: 2211 K

Ce∈ nCCC ,,, 21 K

Fig. 6 illustrates the principle of syntactic constraints. The root of the model is as usual a single
element BIBL which has two child elements Title and Publisher where Publisher is as a
super-element for Title. However, by establishing this logical relationship between Title and
Publisher we simultaneously impose syntactic constraints on their own child elements. Namely,
any child of Title must have super-elements only from within Publisher. For example, the title
“Critique of Pure Reason“ is defined correctly because its publisher Stiinta belongs to
element Publisher which is a super-element of Title which is the parent of this title. The title
“Principles of Philosophy“ is also defined correctly however its super-element STM is a
sub-division of Springer.

Critique of Pure Reason Title

Publisher

BIBL

Springer

Stiinta

x

STM

B2B

Principles of Philosophy

Physical structure of inclusion

Lo
gi

ca
l s

tru
ct

ur
e

of
 o

rd
er

in
g

re
la

tio
n

Fig. 6. Nested ordered set with syntactic constraints.

By using syntactic constraints parent elements can effectively control how their child elements are
defined. Essentially this approach means that any super-element of the parent points to a restricted
domain that is allowed to be used by its child elements. In particular, if a parent has no super-elements
than its children will not be allowed to have super-elements too.

 13

One of the most interesting interpretations of the formal mechanism of syntactic constraints consists
in its use in the object-attribute-value setting. This approach is a generalization of the 4th
interpretation of the ordering relation described in section xx. In the one-level model an element can
be assigned an arbitrary super-element as one of its properties. However, normally properties of
elements are defined for a group of similar elements and have a domain of possible values. For
example, fruits are characterized by colour and hence an apple (an element within fruits) can be red or
green (elements within colours).

This traditional approach can be easily modelled by the two-level nested ordered set. The two-level
model has depth 2 and consists of one root element R (level 0), which physically includes a number of
elements called concepts, , where each concept physically consists
of a number elements called (data) items, . (For comparison, in one-level model

the root consists of data items only: .) Logical structure remains the same, i.e., any
element has a number of super-elements: a concept is a combination of super-concepts,

 and an item is a combination of super-items, . The
difference is that we assume that syntactic constraints are always imposed. This means that concepts
may have any structure according to one-level model while data items may take its super-items from
only super-concepts of their parent concept: ,

}:,,:,:{ 2211 NN CxCxCxR K=
},,,{ 21 iimiii eeeC K=

},,,{ 21 NeeeR K=

RCCCC n ∈〉〈= ,,, 21 K Ceeee n ∈〉〈= ,,, 21 K

ii Ce ∈ ni ,,2,1 K= .

In the two-level model, concept dimensions can be thought of as properties of internal elements which
may take different values as elements of some other concepts. For example, if concept C has super-
concept labelled by dimension , , then we say that element has
property or attribute taking value . In this case the same can be written as follows:

. Thus all possible properties of the two-level model are described in the logical structure of
concepts while items inherit and use this structure.

iC ix RCxC ii ∈〉〈= KK ,:, Ce∈

ix ii Ce ∈

ii exe =.

It is important to understand that attribute-value setting is only an interpretation and all model
properties are defined by the ordering relation over nested structure of sets. However, this
interpretation allows us to connect real world descriptions in terms of attributes and values with the
formal representation using ordered sets. One interesting property of such an approach is that an item
can be both a characterized object and some object property value. More specifically, an item is a
characterized object for its super-items and it is a value of some property for its sub-items.

All the interpretations described in section xx are also valid for the two-level model. In particular,
super-concepts and super-items are considered more general (less specific) than sub-concepts and sub-
items. A concept/item is a logical conjunction of its super-concepts/super-items. And a concept/item is
a collection of its sub-concepts/sub-items. An interesting consequence of these interpretations is that a
value item is more general than the object item it characterizes. And vice versa, an object item is more
specific than value items that characterize it.

3.3 Multidimensional Hierarchical Space
A flat multi-dimensional space consists of a number of axes or dimensions where each
axis takes its values from a set of values or coordinates called also domains: , .
The Cartesian product of these sets of values is the multi-dimensional space, ,
which consists of a number points,

nxxx ,,, 21 K

ii Xx ∈ ni ,,2,1 K=

nXXX ×××=Ω K21
Ω∈ω , where each point is a combination of values,

. We will say that choosing axes with their values defines space syntax or syntactic
structure. If we choose some subset of points in the space then we define semantics or semantic
structure. For example, semantics could be defined as a line or hype-place or a more complex surface
using some type of equation.

〉〈= nxxx ,,, 21 Kω

One of the interesting features of the two-level model is that it can be interpreted as a multi-
dimensional hierarchical space, i.e., a multi-dimensional space which allows for its dimensions to be
defined hierarchically. Such a geometrical interpretation is very important for understanding the
essence of the concept-oriented model. Shortly, concept structure of the model defines its coordinate
axes while items are points in this space. We also refer to the concept structure as model syntax while
items define model semantics. Creating a two-level model can be viewed as defining the space
syntactic structure which provides constraints for the items as described in the previous section. After
that we can define model semantics by adding items which take their coordinates along this space

 14

axes. Such an analogy is rather fruitful because thinking in terms of space and points is a very natural
and intuitive method.

Concept can be viewed as a (flat) multi-dimensional space having n
dimensions with domains in super-concepts . This means that each point

〉〈= nn XxXxXxZ :,,:,: 2211 K

nxxx ,,, 21 K nXXX ,,, 21 K

Zz∈ in this space is characterized by n coordinates along the axes where each coordinate is some
super-item: , , 〉===〈= nn zxzxzxz ,,, 2211 K ii Xz ∈ ni ,,2,1 K= . Points from this space may take
values only along their domains because of syntactic constraints. However, in contrast to the
conventional (flat) multi-dimensional space, points may take no coordinates at all which can be
marked by null. Super-concepts are called domains or ranges for dimensions

 which is denoted as .
nXXX ,,, 21 K

nxxx ,,, 21 K ii Xx =)Dom(

For example (Fig. 7), if we have two coordinate axes x and y with the domains in X and Y then they
can be used to build a two-dimensional space Z using two-level model. Domains X and Y are super-
concepts of Z labelled by dimensions x and y: 〉〈= YyXxZ :,: . Points in space Z are items
consisting of two super-items taken from X and Y. In Fig. 7 each axis has two coordinates (black
circles) that can be taken by points from Z. Syntactically, space Z can consist of 4 points defined as all
combinations of items from X and Y each having two elements. However, semantically, in Fig. 7 we
chose only 3 points (shown as black circles). Fig. 7 a is a traditional representation where two
dimensions are shown as axes with points. Fig. 7 b-c illustrate how the same space is represented
using two-level concept-oriented model. One of the most important features of our approach is that the
space is represented using ordering relation, i.e., we show that a nested ordered set can be interpreted
as a traditional multi-dimensional space.

Y

X

X Y

Z

Geometrical representation Representation by ordered sets

X

Y

Z
x y

x
y

a) b) c)
Fig. 7. Representation of multi-dimensional space by a two-level ordered set.

An important property of using ordering relation for representing multi-dimensional space is that the
role of axis with coordinates and space with points is not strictly assigned. One and the same concept
is interpreted as an axis for its sub-concepts and as a multi-dimensional space with respect to its super-
concepts. In the syntactic structure all concepts have the same rights and we do not define their
concrete role except for having a relative position to other concepts. One consequence of using such
space description is that an existing multi-dimensional space can be used as a dimension for other
spaces represented by its sub-concepts.

We can bring hierarchy into space structure by extending it downwards. For example, concept Z
defined in Fig. 7 as a two-dimensional space with two axes X and Y can be used as a dimension for its
sub-concept W (Fig. 8 a). Thus space W has two direct dimensions Z and U and several indirect
dimensions. What is new here is that dimension Z has its own internal structure, namely, it is a two-
dimensional space.

On the other hand, if we have already an axis then its coordinates are not necessarily primitive items
and may have their own internal structure. Such a complex axis is defined as a multi-dimensional
space with its own axes. For example, in Fig. 8 b axis Y which was a primitive dimension in Fig. 7, is
defined as a two-dimensional space with axes U and V. Thus we can bring hierarchy into a space
structure by extending it upwards.

 15

By adding new sub-concepts or super-concepts we can increase the depth of the space and add more
levels into its structure. So each point still has some coordinates but these coordinates are now points
with their own coordinates.

X Y

Z

x y

U

W

u

z

X Y

Z

x y

U V

a) b)

New space W uses
existing space as an
axis

Existing axis Y is
defined as a space
by adding two axes
U and V

Fig. 8. Hierarchical multi-dimensional space.

Such a geometrical interpretation is very natural and, moreover, it is analogous to one wide-spread
modelling pattern called snow-flake schema. Indeed, if we rearrange concepts shown in Fig. 8 and
draw them as a graph as shown in Fig. 9 then we can easily see that concept W (Fig. 9 a) and concept
Z (Fig. 9 b) play a role of master table while their sub-concepts are detail tables. The main difference
of the conventional snow-flake schema pattern is that it does not use ordering for describing the
structure of the model and such a schema is a graph which is useful for visualization purposes.
Representation by nested ordered sets used in CoM allows us to develop many important mechanisms
which are described later on in the paper.

X

Y

Z

x

y

U

W
u

z

U

V

a) b)

Master

X

Y

Z

x

y

Master

Fig. 9. Representation by snow-flake schema.

4 Operations with Model Semantics

4.1 Representing Model Semantics
Canonical semantics is a representation which allows us to work with different models, compare them
and apply operations to them. Normally for such a representation we choose some common terms so
that all models are represented as points in one and the same space. The problem is that models are
defined using local relationships because it is the way how they are usually built in the problem

 16

domain. For example, two models could be defined as two sets of entities with certain relationships
within each set. In this case it is not clear how do they relate to each other. In particular, we do not
know if one of them is more general than the other and we cannot determine if they are equal. In such
a situation we say that this approach does not possesses canonical semantics because we are not able
to represent these models using some common terms.

Another important role of formal canonical representation of data semantics is that it allows us to
manipulate the whole model as one element. In particular, we can apply operations to the while model
rather than to its constituents like data items or concepts. And then different states of one model could
be semantically compared. For example, we could say that the next state is more general than the
previous one. For example, if we delete a record from one table and add a record to another table then
how the meaning of the whole database will change? If we had formal canonical representation then
we could easily answer this question.

It is rather important problem which exists actually in many other branches of computer science and
other domains. For example, in mathematics this approach allows us to work with functions as
elements of some universal space where one function is one point rather than a number of
constituents. Depending on the properties of this space we can compare these functions and apply
different operations to them. For example, two functions defined indirectly could be actually very
similar or they could have some very special relationships between them or they could possess some
interesting properties which are derived from their position in the space of functions. In computer
programming having formal semantics for a program makes it possible to solve many difficult
problems. Indeed, if we have two programs then how can we decide if they are equivalent or not? The
only way consists in describing them in some common terms in such a way that all programs are
represented as points of one space. Having such a representation we can formally reason about
programs by capturing their important aspects and properties. And we can formally prove that a
program really solves some problem, i.e., reaches some state or gets some result.

One simple approach to introducing formal semantics into two-level model consists in using all data
items from all concepts as a common representation. In this case it is assumed that the structure of the
model is always the same, i.e., we can only compare models having the same syntax. However, such a
representation is actually rather restrictive. First of all, models could be restructured while their
semantics remains the same. A typical example is where one and the same data is represented either in
one table or distributed among many tables but these representations are equivalent. Another serious
problem is that we cannot actually compare models modified using local operations. For example, let
us suppose that we have two models with one and the same syntactic structure. Then we add an item
into one model and remove an item from the second model. Will these models change significantly or
may be they will be equivalent? We cannot answer this question because each item in the
representation uses its local space and hence all operations are defined locally. The main problem is
that the multi-dimensional hierarchical structure prevents us from representing models in common
terms. In other words, we represent data items using terms (super-items) which themselves have their
own representation in other terms.

In order to solve this problem with local terms which do not allow us to work with data items globally
we can represent all data items (i.e., all the available model semantics) in only primitive terms which
do not have their own definition. These primitive terms will be common to all data items and hence all
elements of the model will be represented in one and the same space. As primitive common terms we
choose items from primitive concepts which are called primitive items. If we can express all data in
the model in terms of primitive items then this would allow us not only to compare different models
with the same syntax but also to work with models having different syntactic structure. Indeed, the
only requirement is that the set of primitive items is the same while the hierarchical multi-dimensional
structure based on them can be different. Such a representation is referred to as primitive semantics of
two-level model and it is analogous to the primitive semantics of one-level model described in section
xx.

Primitive semantics of two-level model is defined analogously to one-level model. The idea is that the
hierarchical multi-dimensional space is converted into a flat multi-dimensional space consisting of
only primitive dimensions. The main difference is that in one-level model primitive dimensions are
binary so that a variable either takes its value (primitive item) or does not take it (no value or null). In
two-level model primitive dimensions have normal domains which are primitive concepts where
values are primitive items. Then variables take values from the primitive domains (absence of value is
also possible).

 17

In primitive representation, instead of the hierarchical syntactic structure of the original model we use
common space where are domains of primitive dimensions

: , ,
NPPP ×××=Ω K21 NPPP ,,, 21 K

Nppp ,,, 21 K ii Pp ∈ ii Pp =)Dom(Ni ,,2,1 K= . In other words, are primitive
dimensions of the model (paths from bottom to primitive concepts) while are their
domains (primitive concepts). Since several primitive dimensions of the model may have the same
primitive concept as a domain, the list may include the same primitive concepts. For
example, a model might have only one primitive concept P which is used by N primitive dimensions
of bottom concept and then the primitive syntax would consist of N concepts P: , where

, .

Nppp ,,, 21 K

NPPP ,,, 21 K

NPPP ,,, 21 K

NPPP ,,, 21 K

PPi = Ni ,,2,1 K=

The representation consisting of all primitive dimensions is inherently flat and therefore it can be
naturally represented by a table where columns correspond to primitive dimensions. The table then
has N columns and the row cells take values from concepts . Thus the
table with the primitive representation has as many columns as bottom concept of the model has
primitive dimensions. The difference from the corresponding representation in one-level model is that
now cells take values from primitive concepts as primitive items rather than binary values.

Nppp ,,, 21 K NPPP ,,, 21 K

Let us consider a model shown in Fig. 10 consisting of 6 concepts U, V, W, X, Y, Z where the first
three concepts are primitive, i.e., are direct sub-concepts of top concept (not shown). In order to
determine the structure of the table with primitive semantics we can ignore data items and consider
only concept structure. The primitive syntax of this model has 5 dimensions leading from bottom
concept Z to primitive concepts U, V, W. Hence the table will have 5 columns and each row will have
5 cells taking values from the corresponding primitive concepts. Notice that columns 2-3 take values
from one concept V and columns 4-5 take values from one concept W.

X Y

Z

x

y

V W

 p1

x.u
p2
x.v

p3
y.v

p4
y.w

p5
w

1 1
2 2
3 3
3 3
4 4
4 4
5 5
5 5
6 6
6 6
7 1 3
8 2 3
9 3 5

10 4 5
11 2 3 3 5 5
12 1 3 3 5 6
13 1 3 4 5 6

3 4 5 6

v v w

v 7 8 9 10

11 12 13

U
1 2

u

Fig. 10. Primitive semantics of a two-level nested ordered set.

Further we need to convert model semantics into the primitive representation where all items are
represented by rows in the space of primitive dimensions. In other words, each item from the original
model represented by its local dimensions (super-items) has to be somehow represented as a point in
N-dimensional space of the model primitive dimensions. Here we use the same approach as for one-
level model. Namely, for each original item we insert as many rows as it has sub-dimensions leading
to bottom concept. Formally, if item e has n primitive super-dimensions , , and m
primitive sub-dimensions , , then it produces m items in the primitive semantics
(rows in the tables with primitive columns):

kd nk ,,2,1 K=

jf mj ,,2,1 K= jr

〉〈= njjjj dfdfdfr .,,.,. 21 K

 18

This operation can be viewed as extending item e down to bottom concept along m sub-dimensions:

jj fer)(←=

Item extension retains its original super-dimensions and adds missing primitive
dimensions of the target primitive model. In the table the values of new extended dimensions are
absent and can be marked by null.

nddd ,,, 21 K

Model shown in Fig. 10 has 5 primitive dimensions (syntax) and 13 items (semantics) including 6
primitive items from concepts U, V and W. Each item has to be written in the table with primitive
semantics as many times as it has sub-dimensions. For example, item 1 is written only once in the first
row because it has only one sub-dimension Z.x.u. However, item 3 is written two times because it has
two sub-dimensions Z.x.v and Z.y.v. Items 4, 5 and 6 also produce two rows each because there are
two different paths from bottom concept Z to each of them. All the rest of items produce one row. For
example, item 7 has two super-dimensions in primitive concepts U and V and hence it is distinguished
from other items only by these two values which are written in columns 1 and 2. Its value along first
dimension Z.x.u is equal 1 and the value along second dimension Z.x.v is equal 3. So we write these
two values (primitive items) in first two columns of the table.

Primitive semantics allows us to think of items as points in a flat multi-dimensional space consisting
of primitive dimensions. In particular, using such a representation it is easy to define specific-general
relation. Item a is more specific (less general) than item b if for any primitive dimension in b it has the
same non-null components:

[Specific-general] ba < ⇔ , or ip∀ ii pbpa .. = nullpb i =.

Here is a dimension in the primitive representation of these items (compare it with the definition
of specific-general relation for elements in one-level model). Thus the more coordinates a point has,
the more specific it is. The most general is an item without coordinates at all, i.e., with all nulls as its
super-items. This item is precisely what we mean by top item which is formally supposed to be the
only available super-item for any primitive item. The most specific item does not contain nulls at all.

ip

The specific-general relation is useful for defining coverage relation. We say that an item covers all its
more specific items. In the primitive representation coverage is a number of rows which have the
same values as in non-null components of the selected item. For example, item 7 in Fig. 10 has two
non-null components in first two columns: Z.y.u=1 and Z.y.v=3. It therefore covers two rows 12 and
13 which have the same values in these columns.

It is important that primitive semantics can be used to determine relationships among elements
(specific-general, coverage etc.) only if all items are semantically different. If there are two items
having one and the same super-items (the same semantic definition) then they are indistinguishable in
the primitive representation. As a consequence these two items are represented by equal rows. What is
even worse, their sub-items are also indistinguishable on these components. In this case coverage is
larger than it has to be. This property is quite natural because points with the same coordinates are
also indistinguishable. When using primitive semantics we will always assume that all items are
semantically different. In practice it is not important because all operations are defined in terms of
unique identifiers (item references) and hence we can guarantee distinguishablity using unique
identifiers.

4.2 Projection and De-Projection
The multi-dimensional hierarchical structure provides natural means for navigating over the model. If
we have one or more data items from some concept then we can use dimensions and sub-dimensions
to retrieve related items. Thus the structure of dimensions provides not only syntactic constraints by
restricting possible super-items for an item but it also can be used to move up and down to related
super-items or sub-items, respectively.

Informally, if we have an item then getting its super-item along some dimension is thought of as a
projection while getting its sub-items along some sub-dimension is thought of as a de-projection.
Formally, if e is an item from concept C, Ce∈ , and d is some dimension of concept C with domain
in D, , then operation is referred to as a projection of e to D along d and returns
super-item :

Dd =)Dom(de →
Ds∈

sde =→ , where (or 〉〈= KK ,:, sde sde =.)

 19

So projection of a single item means moving up along the specified dimension and getting a super-
item. It is possible that several items have one and the same super-item, i.e., they are projected to one
point. It will be assumed that if projection is applied to a set of items then the result does not include
repeating super-items. If E is a set of items from C, , then their projection along d returns a set
of their super-items each taken only once:

CE ⊆

U
Ee

dessdE
∈

→==→ }|{

If it is necessary to return all super-items for each source element (even if they are the same) then we
will use dot instead of arrow to denote this operation. So is a set of super-items from D with as
many elements as in E: (for comparison,). For example, in Fig. 11, the
result of projecting three items of set I to super-concept D is two items: . If three items
of concept F are projected to concept D then we will get one item: . Notice that we
can get repeating items using dot operation:

dE.
|.||| dEE = |||| dEE →≥

}3,2{=→ dI
}3{=→→ dfF

}3,3,3{.. =dfF . We can also mix dots and arrows, for
example: . }3,3{. =→ dfF

C

F

f

D

d

I

1 2 3

4 5 6
Fig. 11. Projection and de-projection.

If e is an item from concept C, , and f is a dimension of its sub-concept with
the domain in C, , then operation

Ce∈ 〉〈= KK ,:, CfF
Cf =)Dom(Ffe ←← is referred to as a de-projection of e to F

along f and returns a set of sub-items with projection in this item:

}|{ efssFfe =→=←←

For example (Fig. 11), if items from set I are de-projected to sub-concept F along f then we will get
three items as a result: }6,5,4{=←← FfI . If items 2 and 3 from concept D are de-projected to F
then we will also get three items: }6,5,4{}3,2{ =←←← Ffd .

Notice that for projection we need to specify only the source element(s) and one dimension because
the domain is unambiguously determined by the dimension. For de-projection we need to additionally
specify the target sub-concept as an additional parameter of the operation. It is because a concept may
have many sub-dimensions with one name and these de-projection directions need to be somehow
distinguished.

Another important point is that dimensions used to project or de-project elements may have any rank.
This means that we can find a projection not only to a direct super-concept but also to any indirect
super-concept along a longer upward path. In the graph of the ordered set finding projection of an item
means moving up along the path with the specified name and retrieving the target super- item. Finding
de-projection means moving down along the specified path and retrieving all the target sub-items.

Full de-projection (along all sub-dimensions of any rank) is a set of all more specific items in the
model R: },|{ esIeRs <∈∃∈ . In the table with primitive semantics, the full de-projection is a set of
rows covered by these items. (As we already noticed, this approach for finding de-projection works
only if all items are semantically different, i.e., the model does not have two items with the same
super-items.)

 20

Projection and de-projection operations have a clear geometrical interpretation. If this concept is a
multi-dimensional space then its super-concepts are axes. Any item from this concept has coordinates
along these axes and hence these coordinates are its projections on these axes. In other words, if we
look at an item from some of its super-concepts then we will see only its super-item (if it has null
along this axis then we will see nothing, i.e., the item is invisible along this axis). In data modelling
this operation allows us to narrow down the view by projecting any data item along any its dimension.
An interesting observation here is that projection of one item is equivalent to getting its attribute
values, i.e., attribute values of an object are its projections along the corresponding properties. Thus
properties are views of this object from different dimensions.

Notice also that projection is analogous to the operation of reduction described in section xx. Both
operations result in an element with fewer dimensions. The difference is that reduction is applied to
this element and produces a new element independently of the existence of other elements in the
model (particularly, independently of the existence of super-elements). In contrast, projection returns
an existing element from this model which is somehow related to this element. More specifically, it
returns a super-element given a dimension. The same analogy exists between extension and de-
projection operations. The former transforms the argument and returns some result in any case while
the latter returns a set of already existing sub-elements from this model.

One of the most interesting extensions of the described projection and de-projection operations is that
they can be applied consecutively by producing a chain of upward and downward segments in the
concept graph. Such a sequence of projection and de-projection operations where each next operation
is applied to the result of the previous operation is referred to as a logical access path. A concept
where the access path changes its direction on the opposite one is called a turning point. For example,
in Fig. 11 item 1 from concept F can be projected along dimensions f and d to concept D and then the
result is de-projected back to concept F in the opposite direction. The result of this access path
consists of three items {4, 5, 6} from concept F:

}6,5,4{}4{ =←←←→→→ FfdDdf

Here concept D (marked by bar) is a turning point which can be distinguished by the presence of two
incoming arrows (from left and right). If the obtained set is projected again to concept D then we will
get item 3:

}3{}4{ =→→←←←→→→ dfFfdDdf

Here we have two turning points D (upper) and F (lower) because the path changes its direction two
times.

Assume that a concept has many dimensions leading to some its super-concept. In this case we could
select super-items which are referenced by selected items from this concept along all these
dimensions. Such a projection is referred to as a multi-dimensional projection. Obviously, the result of
multi-dimensional projection is equal to intersection of projections along individual dimensions:

I
K

K
ni

in dEdddE
,,2,1

21 ,,,
=

→=〉〈→

Here E is a subset of items from C and is a set of dimensions along which we want to
project all having one super-concept (one domain), .

〉〈 nddd ,,, 21 K

Dddji ji ==∀)Dom()Dom(:,

Multi-dimensional de-projection is defined analogously. In this case we want to find all sub-items
which reference these items along all selected sub-dimensions.

I
K

K
mi

im FfEFfffE
,,2,1

21 ,,,
=

←←=←〉〈←

4.3 Constraints and their Propagation
Constraints are widely used in data modelling because in most cases we need to select only part of the
whole model which satisfies certain conditions. For example, we might want to select only objects
with certain properties, say, persons with some birth date. However, in the concept-oriented model we
formally have only a nested set of ordered elements and hence we need some method for imposing
constraints on it and selecting a subset of this ordered set of elements. Here we have two major
problems. One is that elements are organized into a multi-dimensional hierarchy and hence this set

 21

cannot be considered as a flat multi-dimensional space. The second problem is that constraints are
normally imposed locally by specifying properties of items but we need a method for their
propagation through the whole model. In other words, it is necessary to understand how local
constraints influence elements in other parts of the model.

Let us assume that set O also called the universe of discourse does not possess any structure and
consists of all syntactically correct elements. Essentially, each element Oo∈ is a potentially possible
data item that we can construct and use in such a trivial model. Further, we select subset M of this set
O, , which consists of all semantically correct elements, i.e., elements which are considered
meaningful in the problem domain. Subset M reflects the current state of the problem domain and we
can change it by adding or removing elements. There exist numerous ways for representing subset M
of meaningful elements, e.g., analytically using some equation, logically using predicate calculus or
explicitly by enumerating all its elements. But any approach has to provide means for determining
semantic value for any element

OM ⊆

Oo∈ . This semantic assignment is actually a characteristic function
or distribution from the set O of all syntactically correct elements to the set L of semantic values:

LO →:ϕ . If we represent this characteristic function then we essentially represent all the data (or
knowledge) in our system.

Set L may have different composition and structure. For example, if it consists of all points from the
interval [0,1] then we can build a system with fuzzy semantics or probabilistic semantics (depending
on the set of operations). However, one of the simplest cases is where it consists of only two elements
0 and 1, , which are interpreted as false and true, respectively. We say that in this case each
element from the universe of discourse O can be either meaningful or not. In databases set M is
normally stored explicitly by creating the corresponding objects identified by their references. In this
case semantic values from L get existential semantics, i.e., if an object exists in the database then we
say that it belongs to set M and is meaningful. Otherwise, if it does not exist in the database then we
say that it is assigned value 0. Yet we can explicitly assign existence as a marker. If an existing object
is marked by 1 then it is assumed to really exist. If it is marked by 0 (or null) then we assume that it
does not exist.

}1,0{=L

semantic values

O

L

1

0

M

φ(o)

syntactic
elements

necessary

possible
uncertain

Fig. 12. Necessity semantics.

Two semantic values 0 and 1 may have different interpretations. One approach assumes that a data
item exists in the database (marked by 1) only if we are absolutely sure that it exists in the real world
(Fig. 12). For example, if data semantics is represented by subset M then we can add a new data
element to it by producing a new state of the database: Oe∈ '}{ MeM =∪ . In this way we say that
element e is known to exist in the problem domain or is known to be meaningful. M’ is a new state of
the database which includes element e. What about other elements which are assigned 0 in our
semantics? They are interpreted as uncertainty, i.e., if an element is assigned 0 (is not in the database)
then we assume that we do not have any information on it. Thus we know only what we have
explicitly while everything else is supposed to be unknown. Semantic value 1 is also called necessity
(i.e., existing elements necessary exist) while value 0 is called uncertainty. Notice that this
interpretation assumes that elements marked by 0 are still possible.

The semantics of necessity which used to represent data has one important property: we are not able to
represent negative information, i.e., we cannot represent what is known not to exit. Indeed, value 1 is
used to mark elements which are known to exist while value 0 is understood as uncertainty. However,

 22

frequently our knowledge about the problem domain has a negative character, i.e., we know what is
not possible rather than what is necessary. An alternative approach consists in interpreting 1 as
uncertainty or possibility while 0 is interpreted as impossibility. In other words, elements which are
known not to exist (also called disabled or prohibited elements) are assigned semantic value 0 (Fig.
13). This semantics of possibility is used in describing constraints. Thus constraints have always
negative character by excluding some data or specifying what is not interesting in the current context.
Such prohibited intervals are also called holes in data. Constraints can be also expressed via a function
or distribution from the set of all syntactically correct elements to the set of semantic values:

LO →:ψ . However, elements of set L have the semantics of possibility rather than semantics of
necessity. As a result, if we combine two constraints then the number of excluded elements will
increase.

semantic values

O

L

1

0

N

ψ(o)

syntactic
elements

impossible

possible
uncertain

Fig. 13. Possibilistic semantics.

If data is normally represented in an extensional form by enumerating all semantically correct
elements from set M then constraints are normally represented in an intensional form by specifying
characteristic properties of elements from N which are known to be impossible. In other words,
elements of subset M are represented explicitly while elements of subset N are represented implicitly.

One use of constraints consists in representing negative semantics by excluding elements which are
known to be meaningless. For example, we might say that persons with age 200 years or higher are
impossible. This information is stored in the database and then is used for consistency checks. The
state is considered consistent if intersection of data with constraints is empty: . In other
words, the database does not have any positive claims about what is known to be impossible. Such
constraints can be viewed as static because they are permanent part of the database, i.e., the database
consists of two parts: positive M and negative N.

0/=∩ NM

Another use of constraints consists in selecting part of data stored in the database. Such constraints are
dynamic because they are stored in queries and describe what is interesting to a user or application.
For example, we might want to retrieve only data on persons with the age 30 years or older. Such
constraints actually say that all younger persons have to be effectively removed and only persons
satisfying this criterion are considered possible. In such a use constraints are imposed on the current
data and their intersection is returned to the user. NM ∩

In the two-level model an elementary constraint is imposed on one concept by excluding some its
items which are declared impossible (while all the rest of the items from this concept are assumed to
be possible). Constraints on concept C are represented as a possibility distribution which
assigns some semantics value to each element

LCC →:ψ
)(eCψ Ce∈ and hence an element is either false or

true. Elementary constraints cannot be overwritten, i.e., if an element is excluded then it cannot be
made possible by imposing new constraints (otherwise we would get non-monotonic logic). Notice
that elementary constraints use only this concept for selecting possible elements, i.e., we cannot use
items from other concepts. For example, if concept Products has a sub-concept Manufacturer then we
cannot select a subset of products produced by some manufacturer using only elementary constraints.
Thus elementary constraints use only internal properties of items (represented and passed by value
like references in CoP). For example, we might select an interval of ages because ages are represented
by numbers.

 23

Elementary constraints allow us to select a subset of items from individual concepts but the question
is how we can propagate these constraints through the whole model. The thing is that normally
removing an element from a concept affects also other concepts in this model, i.e., imposing
constraints on one concept results in getting new constraints in some other concept(s). The simplest
case of such constraint propagation arises when we interpret the ordered structure of items in terms of
attribute values, i.e., a super-item is an attribute value for its sub-items (see section xx). Normally we
want to select a subset of objects (from one concept) by specifying a subset of its properties (from the
super-concept). If C is a concept, d is one of its direct dimensions with the domain in super-concept D
and elements of D are constrained by the distribution then this constraint is propagated down to C
by producing distribution according to the following rule:

Dψ

Cψ

xdexD =∧= . 0)(ψ ⇒ 0)(=eCψ

This definition means that if an item (attribute value) is prohibited by some constraint then the object
it characterizes is also (automatically) prohibited. So an item is possible if only its super-items are still
possible:

}1).(|{ =∈= deCeM Dψ

The above formulated principle allows us to specify impossible values and then the objects
characterized by them (along the specified dimension) will be automatically excluded from the set of
possible items. In other words, constraints imposed on a concept are automatically propagated to its
sub-concept(s). Yet here we have some asymmetry. The thing is that formally speaking we do not
have a separation on values and objects and hence the propagated new constraint can itself propagate
further down. In this case we simply assume that the excluded objects play the role of attribute values
for the sub-items. The general principle of downward constraint propagation is formulated as follows:

[Downward constraint propagation] An item is prohibited if at least one of its super-items is
prohibited.

Thus in the general case constraints are propagated down to bottom concept recursively using the
principle that if an item is assigned 0 (null) by some constraint (directly or indirectly) then its sub-
items along selected dimension(s) are also assigned 0.

Obviously, this principle means that if an item is excluded then its de-projection of all ranks along the
specified dimension is also excluded (Fig. 14):

0)(=xDψ ⇒)rank(, ,0)(fFfxIyyF ∀←←=∈∀=ψ

C

F

f

D

d

}0)(|{ == xxI Dψ

0)(=←← dfIFψ

Fig. 14. Downward constraint propagation.

We said already that imposing constraints means assigning 0 (null) as a semantic value to some items
so that these item look like non-existing. This entails impossibility to use them as super-items (from
sub-concepts). However, if some item from a sub-concept already used them, i.e., and

, then the definition of this sub-item changes. Namely, instead of the prohibited item
we write 0 (null) which essentially means that this super-item is absent,

0)(=eCψ
〉〈= KK ,:, edi

〉〈= KK ,:, nulldi . At this
moment we get an alternative concerning what to do with the modified sub-item: (1) if it can exist
with null as a super-item then it remains possible, i.e., , (2) if it cannot exist with null as a 1)(=iDψ

 24

super-item then it is marked impossible. . In the latter case this sub-item is prohibited as a
result of prohibiting its super-item and hence then the procedure proceeds recursively to the next sub-
item. Earlier we assumed that the second alternative is true.

0)(=iDψ

Above we considered how constraints imposed on a concept are propagated down to sub-concepts.
However, constraints can also propagate in the opposite direction from a concept to its super-concepts.
Informally, the idea is that if an object is removed from consideration then we are also not interested
in having its attribute values. For example, if we select a subset of products then we are interested in
seeing only their manufactures rather than all possible manufacturers. Yet a value is excluded only if
it is not used by any selected object, i.e., a value is still possible and visible in the selection if at least
one object uses it in one of its attributes. In the general case the upward propagation principle is
formulated as follows:

[Upward constraint propagation] An item is prohibited if all its sub-items are prohibited.

Formally this means that if an item is possible then all its super-items are also possible:

edxxF =∧= . 1)(ψ ⇒ 1)(=eDψ

Obviously, this means that only the projection of possible items is possible while all other items are
impossible (Fig. 15):

1)(=xFψ ⇒)rank(, ,1)(ffxIyyD ∀→=∈∀=ψ

C

F

f

D

d

}1)(|{ == xxI Fψ

1)(=→→ dfIDψ

Fig. 15. Upward constraint propagation.

Upward propagation is a propagation of possibility while downward propagation is a propagation of
impossibility (prohibition). In other words, if an item is marked impossible then all its sub-items are
marked impossible (assuming that initially all are possible) and if an item is marked possible then all
its super-items are marked possible (assuming that initially all are impossible). In geometric terms, if a
coordinate is removed then all points having it are also removed and if a point is placed then all its
coordinates must be also present.

4.4 Dependencies and Inference
Let us assume that variable depends on Yy∈ Xx∈ . In the case of no dependence variable y could
take any value from Y without any restrictions. However, if y depends on x then selecting a subset of
values in X means restricting possible values in Y. The presence of dependence can be expressed in
terms of three sets: X, Y and their Cartesian product YX × which consists of all combinations of
values from X and Y. The dependence can be represented as a subset of combinations of values,

. If we restrict values in X by selecting its subset then the set of possible points in
Z is also restricted and we get its subset . The subset of points then is projected to set Y and
restricts it so that we get a subset of values from .

YXZ ×⊆ XX ⊆'
ZZ ⊆'

YY ⊆'

In two-level model dependencies are treated analogously to this interpretation. Concepts are treated as
sets of values and selecting some subset is performed by imposing and propagating constraints. The
main difference is that concepts in our approach are ordered and hence their relative position
determines their role. In particular, a common sub-concept plays a role of dependence with respect to
its super-concepts. For example (Fig. 16), if concept Z has two super-concepts X and Y then its

 25

semantics (its set of items) represents a subset of all possible combinations of items from X and Y. By
imposing some constraints on concept X we can select its subset X’. This subset is then propagated
down to concept Z where we select subset Z’. Finally, subset Z’ is propagated up to concept Y where
we get subset of items Y’. Thus having a common sub-concept allows us to propagate constraints from
X to Y. Obviously, this procedure is symmetric and hence we say that concepts X and Y are dependent.

 X

Z

Y

X

Y

X’Y’

1

2
1 2

Z

X’

Y’
Z’

Z’
X

Y

1

2

Z

X’

Y’ Z’

Fig. 16. Dependencies and inference.

The procedure of propagating constraints from one concept to a dependent concept is referred to as
inference. In the general case this procedure depends on many factors. For example, it depends on the
nature of the set of semantic values L. If it is an interval [0,1] with operations min and max then we
can define fuzzy inference. If we use probabilistic operations then we get probabilistic inference
where probabilities over the set X are propagated to probabilities over Y taking into account
probabilities of Z (such as factor analysis). For the inference procedure it is important also what kind
of data/knowledge representation is chosen. For example, we might use rules to describe dependence
of Y from X or analytical formula like in neural network.

In the described approach we assume that data is represented explicitly, i.e., each item is represented
by its own individual and unique reference. Then the procedure of inference consists of two major
steps (Fig. 16):

1. De-projecting source constraints over selected sub-dimensions down to bottom concept

2. Projecting the obtained semantics of bottom concept up to the target concept

Input constraints can be imposed independently on several concepts . Independence
means that they are propagated down to bottom concept and then the final result is intersection of the
input de-projections:

nXXX ,,, 21 K

)()()(' 2211 ZxXZxXZxXZ nn ←←∩∩←←∩←←= K

Notice that many propagation dimensions can be specified for each one input concept and each such
propagation dimension makes its own independent contribution to the final constraint imposed on
bottom concept Z.

The output semantics is produced on the second step of the inference procedure by projecting the
constrained bottom concept semantics Z’ up to the output concept Y along the chosen dimension y:

YzZY →→= ''

5 Uses of the Model

5.1 Query Language
In this section we describe a simple query language which is mainly intended to demonstrate
possibilities of the concept-oriented data model. It is important that it is not a full featured query
language but rather a set of language constructs which can be incorporated in other languages or
developed further. We chose SQL-like syntax for this language because SQL currently dominates
among query languages and is therefore easy to comprehend. Yet, in some cases we propose
alternative keywords and syntactic constructs which seem more appropriate for our model and
emphasize its difference from the existing approaches.

 26

In two-level model there are two types of elements: individual data items and collections of items.
Both types of elements are represented by their references which can be stored in variables. Concepts
in the database are actually collections which are globally visible and accessible via their name.
However we can also create dynamic collections within the current query scope. Reference to a
collection can be returned by queries and then it can be stored in a variable. Such variable is declared
as having type Collection. For example, if we want to store a collection of items returned from a
query then we write it as follows:

Collection myCollection = SELECT * FROM Employees;

Returned collections can be also used anonymously, for example, by passing them as parameters or
applying to them an operator directly:

AVERAGE(SELECT age FROM Employees);
SELECT * FROM (SELECT * FROM Employees) WHERE age > 30;

Item identity (reference) can be stored in variables or used anonymously. We can apply dot operation
to an item variable followed by dimension name in order to access content stored in this item entity,
i.e., a reference to the corresponding super-item:

Item mySuperItem = myItem.myDimension;

Collections and items have some structure which is described by its dimension names and super-item
types. If we need only one dimension then it can be selected using the same dot operation applied to a
collection:

Collection collectionOfSuperItems = myCollection.myDimension;

Notice that the new collection has the same number of element, i.e., it is not projection. If it is
necessary to select several dimensions then they can be specified in angle brackets:

Collection newCollection = myCollection.<dim2, dim4, dim6>;
Item newItem = myItem.<dim2, dim4, dim6>;

In strong typed systems it is necessary to specify a type of an element referenced by a variable. In our
case it is desirable to be able to restrict type of collections and items rather than marking then as
Collection and Item, respectively. We will assume that item type is specified by the collection
name. For example, if we have collection (say, concept) Employees then it can be used as a type of
items and these items will be automatically restricted to the structure of this collection:

Employees manager = getManager(person);

Here we pass a person reference to query getManager which returns a reference to his/her manager
which is then stored in a typed variable. Notice again that here type Employee is used to restrict the
structure of the variable.

Type of collections is specified in angle brackets as follows:

Collection<Employees> persons;

Here we declared a variable which references a collection of items where items are of type
Employees.

A collection is not an isolated set of items. Rather, it lives within some structure of super-items and
possible sub-items (if its elements are referenced from some other collection). Hence we can apply
operations of projection and de-projection to collections as well as individual items which are denoted
by right arrow and left arrow followed by dimension name, respectively. For example, if we have a
collection of products then a set of their manufactures can be obtained as follows:

Collection companies = products -> manufacturer -> Companies;

Here we use concept Companies for projecting. In the general case it can be any collection.

If we have a manufacturer then the set of its products can be obtained using de-projection:

Collection products = companies <- manufacturer <- Products;

Instead of concept Products we might use any collection with a subset of products. Projection and
de-projection can be combined by producing a so called zigzag query.

 27

In addition to restricting dimensions of a collection, frequently we would like to restrict its items by
selecting only those satisfying certain criteria. In our language these criteria are separated from the
source collection by bar symbol, i.e., we write the input collection then bar symbol and finally a set of
conditions each items in the output collection has to satisfy. For example, if we want to select only
persons with the age 30 then it can be done as follows:

Collection p = (Employees | age == 30);

Here condition uses dimension names of the input collection. Actually, such a form is a shortcut of the
general case described below. In particular, we omitted instance variable for the input collection that
can be then used in condition part:

Collection p = (Employees emp | emp.age == 30);

Condition may have any complexity but normally it uses the instance variable and dimensions names.
Projection and de-projection operations are also possible. For example, we might select only persons
who participate in more than 3 projects:

Collection p = (Employees e |
 COUNT(e <- employee <- ProjEmp) > 3);

Here each current person from concept Employees is de-projected down to concept ProjEmp (a
link between projects and employees) and we evaluate the size of this de-projection. Since it is a
normal collection we restrict the number of its elements using aggregation function COUNT.

In the general case a query consists of the following parts:

FROM – input collections (the structure of space)

SELECT – output structure (horizontal restrictions)

WHERE – semantic constraints (vertical restrictions)

First of all any query is supposed to get some input collections which are specified using their
references such as concept names or references to collections. Input collections are specified in the
FROM clause where they are separated by comma. For each collection an instance variable is also
specified. For example, if our query processes two concepts Projects and Personnel then it is
written as follows:

FROM (Projects project, Personnel personnel)

The result of FROM clause can be thought of as a description of new space which consists of all
combinations of the input items (i.e., the Cartesian product of input collections). In the last example
this clause says that we are going to consider all combinations of projects and persons. An alternative
keyword for this clause could be FORALL which means that the query will produce its result from the
set of all combinations of items in the specified collections.

A query with a single FROM clause will actually return a new collection which consists of all
combinations of its input items and has all dimensions from the input collections Notice that this
result is a normal collection which can be used in other queries or stored in a variable.

SELECT clause is intended to restrict the structure of the returned collection by specifying only the
input dimensions we want to have in the output collection. For example, in the following query for all
combinations of projects and persons we return only two dimensions:

FROM (Projects project, Personnel personnel)
SELECT (project.name, person.name)

An alternative name for the same construct could be RETURN which emphasizes that the specified
values have to be returned in the output collection. Of course, we can provide computed values in this
clause including projections and de-projections.

The main purpose of any query consists in selecting a subset of items from the input multi-
dimensional space described in FROM clause. It can be done in WHERE clause which provides a
complex condition each input item has to specify. In other words, the output collection will consist of
only input items which satisfy the provided condition. The criterion is a logical formula consisting of
elementary conditions and logical connectives. For example, we might restrict items as follows:

FROM (Projects project, Personnel personnel)

 28

SELECT (project.name, person.name)
WHERE (person.age > 30 AND project.budget < 20)

Notice that we use instance variable declared in FROM clause to access other items in the whole
model. In other words, all items are living within one global structure and we can use this structure for
access.

WHERE clause allows us to provide a condition in a declarative form and then the query will return all
input items which satisfy it. In some cases conditions could be provided in an imperative form as a
procedure which is written as a query body. For example, the previous query could be written as
follows:

FORALL (Projects project, Personnel personnel) {
 IF (person.age > 30 AND project.budget < 20)
 RETURN (project.name, person.name);
}

Here the declarative and imperative approaches are syntactically equivalent (essentially we changed
only keywords and their order). Notice that in this example the order of computations is not specified.
The imperative form (with query body) is more flexible in writing very complex queries especially
with manual computations of intermediate elements. Such queries use full power of imperative
approach but have much less possibility for optimization and loose elegance and simplicity of
declarative queries.

5.2 Multi-Valued Properties
By property we normally mean some element associated with this element. However, frequently when
describing a problem domain it is desirable to associate a collection of other elements as a
characteristic of this element. Such collections can still be considered normal properties especially if
they are named. For example, an order could be characterized by a set of order parts or a customer
could be characterized by a set of made orders. One traditional solution to this problem consists in
introducing a new dedicated mechanism which allows us to have multiple-valued properties. Such
values can be viewed as arrays or lists and normally are used for storing small collections. Although
this approach could be convenient in some cases, it has one drawback: it is not clear how to formally
interpret such an extension.

Formally, in the concept-oriented model we have only ordering of elements while other mechanisms
are only interpretations of the order. In particular, the ordering of elements can be used to model
multiple-valued properties. The main idea is that such properties are associated with sub-items of
elements. If we have an item then its super-items are interpreted as single-valued properties while its
sub-items are interpreted as multiple-values of some property. Obviously, multiple-valued properties
are de-projections of this item along some sub-dimension. For example, an order is characterized by a
set of order parts which are obtained by de-projecting to the corresponding sub-concept.

The only thing that lacks here is the name for properties. Indeed, if for single-valued properties we can
use dimension names then for multiple-valued properties such an approach does not work because
sub-dimensions are not always unique. In order to overcome this difficulty a derived property can be
defined for any concept. A derived property is actually an arbitrary named query which returns some
result set. For example, we could define a multiple-valued property of concept Employees which
returns a set of its orders:

Employee::orders() {
 RETURN this <- employee <- Orders;
}

Once this property is defined it can be applied to employee items as if it were normal property.

In the general case derived properties may take input parameters. For example, we might define a
property which returns a set of orders having some category:

Employee::orders(Category c) {
 RETURN this <- employee <- (Orders o | o.dish.category == c);
}

Derived properties could have any definition which is allowed for normal queries.

 29

5.3 Grouping and Aggregation
The mechanism of grouping and aggregation is highly important for data modelling. It has many
interpretations and possible applications but the general idea is that focus is shifted to manipulating
groups of data elements such as subsets of records. It is important that a group is considered an entity
with its own properties and characteristics. For example, in such a group-oriented approach
departments are characterized not only by name and location but also by its employees and projects,
i.e., one department has a group of employees working in it and a group of projected associated with it
(possibly indirectly via employees). In this approach two types of elements are supposed to exist:
(i) groups and (ii) group constituents. For example, we might consider departments as groups and
employees as their constituents. Or we might consider employees as groups and projects as their
constituents.

In relational model grouping is based on specifying a characteristic property of group constituents
which has to be the same for one group. Thus group elements do not participate in such an approach
explicitly. For example, we could group all employees depending on their department property, i.e.,
all employees having one department id produce one group. Notice however that departments do not
participate in this operation explicitly. Yet departments (groups) are precisely what will be produced
in the result set while employees (group constituents) are used only to produce local groups and
compute some (aggregated) properties. Thus in RM one relation can be grouped in many different
ways depending on the characteristic property specified in the query.

In the concept-oriented model grouping is not a separate dedicated mechanism so we do not need
special operations or additional support from the model. Grouping is a natural consequence of the
model structure. Namely, it is a consequence of the third interpretation of the ordering relation (see
section xx) which says that an element is a logical collection or group of its sub-elements. Thus
groups are not specified explicitly in queries but exist permanently in the database. For example, if a
department has a number of employees as its sub-items then these employee items are known to
constitute a logical group associated with this department. Obviously, a group associated with this
element can be retrieved as its de-projection along some sub-dimensions down to some sub-concept.
In this approach one element is characterized by many different groups from its sub-concepts, i.e.,
group has one type while constituents have other types.

Below we consider how this approach can be used for data retrieval using example shown in Fig. 17.
Let us assume that employees (concept Employees) are ordering dinner (concept Orders) which is
characterized by date (concept Dates). Each dinner consists of several dishes (concept Dishes)
characterized by dish type (concept Categories) and price. The many-to-many relationships
between ordered dinner and dishes is stored in concept OrderParts which is bottom concept in this
model containing the most specific data items.

Orders

Employees

Top

OrderParts

Dates

Dishes

Categories

order

employee

dish

category
date price

count

Fig. 17. An example of grouping and aggregation.

Assume we need to get a list of persons who ate ‘pizza’ more than 100 times during 2006. From this
problem formulation we see that we need to get persons as an output so we start our query concept
Employees which is the only input concept for the query:

FROM Employees e WHERE ... SELECT ...

What persons to return is already the second issue in this approach which is deliberately separated in
the query syntax (in SQL we would write all the participating table names in FROM clause). For each

 30

person in this model there is a group of orders and each order has a group of order parts. We need to
choose persons depending on what concretely they ordered during 2006. In our query we can describe
this group by using de-projection:

Collection group = e
 <- employee <- Orders
 <- order <- OrderParts;

However, we do not need all order parts for the current employee – it is necessary to choose only
those made in 2006 and belonging to the specified category. So we restrict items in the two concepts
as follows:

Collection group = e
 <- employee <- (Orders | date == '2006')
 <- order <- (OrderParts | dish.category == 'pizza');

Alternatively, we might write it as follows:

Collection group = e <- employee <- order <- (OrderParts |
order.date == '2006' AND dish.category == 'pizza');

In both cases variable group will contain a group of employees who ordered 'pizza' in 2006. Now for
getting the final result we need to simply choose employees for which this variable has more than 100
items:

WHERE COUNT(group) > 100

Finally we need only to pack these fragments in one query:

FROM Employee e
WHERE COUNT(
 e <- employee <- order <- (OrderParts
 | order.date == '2006' AND dish.category == 'pizza')
) > 100
SELECT e.name

If we need to compute more properties of the employees using the obtained group of order parts then
its reference could be stored in a local variable within query body. For example, if in addition to
person name we need to return the total price then it can be done as follows:

FROM Employee e
{
 Collection group = e <- employee <- order <- (OrderParts
 | order.date == '2006' AND dish.category == 'pizza');
 double total = SUM(group.<count * dish.price>);
}
WHERE COUNT(group) > 100 AND total < 200
SELECT e.name, total

Here the intermediate values are computed in the body. In particular, we compute the group of order
parts satisfying our conditions and then sum up the price paid for them. Then we choose only persons
who ate more than 100 pizzas and paid less than 200 EUR for that. The output includes name of the
person and the total price paid. The same could be done without using query body but with much less
clarity. An equivalent but more imperative form of the same query is as follows:

FROM Employee e
{
 Collection group = e <- employee <- order <- (OrderParts
 | order.date == '2006' AND dish.category == 'pizza');
 double total = SUM(group.<count * dish.price>);
 IF(COUNT(group) > 100 AND total < 200)
 THEN RETURN(e.name, total);
}

An alternative more verbose form of the same query can be written as follows:

FROM Employee e
{

 31

 Collection group =
 FROM OrderParts op
 WHERE
 op.order.date == '2006' AND
 op.dish.category == 'pizza'
 SELECT op.count * op.dish.price
}
WHERE COUNT(group) > 100 AND SUM(group) < 200
SELECT e.name, SUM(group) AS total

Here instead of using de-projection operation, we manually build de-projection by selecting items
from OrderParts which reference the current employee item from Employees.

All these queries have the following important distinguishing features:

• We do not use joins for getting related items. Such queries are easier to write and clearer for
understanding.

• We use projection and de-projection along dimensions.

• Groups are collections built within an external query.

• Aggregated properties are normal properties computed from internal collection.

Grouping in SQL is done as follows. First, we need to select elements of groups satisfying their
conditions (WHERE clause in SQL). Then the selected elements are grouped (GROUP BY clause in
SQL) and their aggregated properties are computed. And finally only groups satisfying their properties
are selected (HAVING clause in SQL). Notice that here we have two kinds of restrictions: those
imposed on elements of groups via WHERE clause and those imposed on groups themselves via
HAVING clause. Thus it is assumed that only one group is produced from the records.

Let us now suppose that we need to take more aggregated properties into account which are computed
on different groups. In the above example we selected employees depending on how many pizzas they
ate in 2006. What if among them we need to select only employees who made at least 10 orders in
2007? Notice that for each person we need to create and analyze two groups: a collection of order
parts (with pizza) made in 2006 and a collection of orders of any kind made in 2007. This query is
written very simply by selecting the persons in the outer query depending on the properties of groups
created inside this query:

FROM Employee e
{
 Collection group =
 e <- employee <- order <- (OrderParts
 | order.date == '2006' AND dish.category == 'pizza');
 Collection group2 =
 e <- employee <- (Orders | date == '2007');
}
WHERE COUNT(group) > 100 AND COUNT(group2) > 10
SELECT e.name

We might also easily add more groups created over employees such as a collection of different dish
categories. What is common to all these queries is that in the outer query we select group items
(persons) using either their existing properties like age or properties computed inside the query body.
In particular, such computed properties could be produced by creating collections of items using de-
projection or more complex queries.

One general problem in dealing with groups of data items consists in mutual influence of different
restrictions. This problem is especially complicated if restrictions belonging to logically different
elements of the query are imposed on the same items. For example, let us assume that we want to
select employees who ate such dishes in 2006 that were eaten by more than 10 different employees in
2007. Here we need to select employee items but we see also that these very items influence dish
categories which in turn are taken into account when selecting employees. Another complication is
that we have two incompatible restrictions on dates of orders which also have to be somehow
arranged.

 32

In our approach writing such a query is not much more difficult than in the previous example. The
general idea is that we start from what we want to get and produce the necessary properties that are
used to restrict the selection. In this example the selection of employees depends also on employees,
i.e., each employee is a group of other employees who ate the same dishes. This can be written as
follows:

FROM Employee e
{
 Collection group =
 e <- employee <- order
 <- (OrderParts | order.date == '2006')
 -> dish -> category
 <- category <- dish
 <- (OrderParts | order.date == '2007')
 -> order -> employee;
}
WHERE COUNT(group) > 10
SELECT e.name

Notice that in this query we go through concept OrderParts two times with different date
restrictions. We can also easily add more restrictions to other intermediate items including additional
aggregated properties. For example, instead of selecting orders belong to a concrete year we can select
those orders that have a year characterized by a high number of orders:

(OrderParts | COUNT(order.date <- date <- Orders) > 1000)

This fragment selects belonging to a year with high number of orders (more than 1000).

5.4 Multi-Dimensional Analysis and OLAP
The mechanisms based on projection and de-projection operations described in the previous sections
are inherently one-dimensional because we always move along one path in the concept graph. We can
change the path and its direction or we can provide criteria the intermediate elements have to satisfy.
However, this method does not allow us to move along several paths and select elements taking into
account several project and de-projection operations executed in parallel rather than sequentially.

In practice such a one-dimensional approach is frequently very restricted because we need to view
elements as belonging to several groups simultaneously. For example, we might want to view all the
sales as belonging to some country and to some product category. In this case each concrete sale
belongs to one cell in the two-dimensional space where one dimension consists of all countries and
the second dimension consists of all product categories. On the other hand, each cell from the two-
dimensional space, i.e., each combination of one country and one product category, is a group of sale
facts. Such type of analysis where elements are viewed simultaneously along several dimensions is
studied in online analytical processing (OLAP). In the concept-oriented model it can be performed
using a procedure consisting of the following steps:

1. Choose a fact concepts consisting of items that will be grouped along several dimensions and
impose constraints on its elements

2. Choose several dimension paths of the fact concept along which its elements will be grouped

3. Choose one level concept along each dimension path and impose constraints on them

4. Build a multi-dimensional cube as the Cartesian product of all the level concepts

5. Group elements of the fact concept over elements of the multi-dimensional cube

6. Choose a measure of the fact concept and compute its aggregated value for each group

The result of such an analysis will be one aggregated measure property associated with one cell of the
multi-dimensional cube.

Let us assume that we need to analyse how our company sales are distributed in the space of
customers and products. Each individual sale is stored as an item of concept OrderParts (Fig. 18).
Items of this concept will be grouped over two dimensions and some property of this item will be then
aggregated. Hence we choose OrderParts as a fact concept in our analysis.

 33

Customers

Countries

Orders

Top

OrderParts

Months

Products

Categories

order

customer

country

product

category

date

month

Dates

Fact concept

2nd level concept 1st level concept

Fig. 18. An example of multi-dimensional analysis.

The first dimension path describes customers: OrderParts->order->customer->country.
Thus any fact item (one sale) is characterized by an order, a customer or a country, depending on the
level of details we choose on the next step. The second dimension path describes products:
OrderParts->product->category. Now any fact (one sale) is characterized by two values:
one from the customer dimension path and the second from the product dimension path.

Each dimension path chosen on the previous step consists of several concepts which differ in their
level of details. For analysis we need to choose one level of details for each dimension path. For
example, we might start from the lowest level of details by choosing Countries as a characteristic
of customers and Category as a characteristic of products. If later we need to see more details then
we can down to a sub-concept (drill down in OLAP terms). After choosing these level concepts, each
fact item belongs simultaneously to a pair of level items. In other words, one sale belongs to one
country and one category as a group.

Now let us consider how fact items are grouped over elements of multi-dimensional space. First of all
we need to produce a multi-dimensional space from the chosen level concepts. This can be done using
FROM clause where level concepts are parameters:

FROM (Countries country, Categories category) ...

The result of this query is a collection consisting of all combinations of countries and categories. If we
do not need the whole space then its size can be restricted by imposing constraints in WHERE clause.
For example, if we want to consider only countries with at least one customer then it is written as
follows:

FROM (Countries cntr, Categories ctgr) ...
WHERE (cntr <- country <- Customers > 0)

Here we de-project this country and compare the size of the group of obtained customers with zero.
We used a shortcut which in full form is written using aggregation function:

WHERE (SIZE(cntr <- country <- Customers) > 0)

Now it is necessary to group fact items over the cells of the two-dimensional space. This can be done
manually by selecting fact items for each current pair country and category:

Collection grp =
 FROM OrderParts op
 WHERE op -> order -> customer -> country = cntr
 AND op -> product -> category = ctgr

Here we actually use a definition of multi-dimensional de-projection by selecting only items which are
projected along the both dimensions on the current pair of country and category. If multi-dimensional
de-projection is supported in the query language then it could be written in the following shorter form:

Collection grp = [
 cntr <- country <- customer <- order <- OrderParts
 AND ctgr <- category <- product <- OrderParts
]

This syntactic format (using square brackets) takes two or more de-projections starting from different
super-concepts (level concepts) and ending in one sub-concept (fact concept). The result of each

 34

group (multi-dimensional de-projection) is an intersection of all one-dimensional de-projections
constituting this query.

When building a group of fact items for each cell in the two-dimensional cube we can restrict its
elements by imposing some constraints. For example, we might select sale facts only for some year:

Collection grp =
 FROM OrderParts op
 WHERE op -> order -> customer -> country = cntr
 AND op -> product -> category = ctgr
 AND op.date = 2007

Now we have two-dimensional space for each cell of which a group of facts is built. However, we
would like to see some aggregated property of this group rather than a number of its elements as an
output. In this case it is necessary to choose an aggregated property as a measure. For example, we
might sum up the price paid for the orders within one group:

double total = SUM (grp.price)

It is possible to select more measures the number of orders in the group of order parts:

integer cnt = COUNT (grp -> order)

These measures are then included in the query output via SELECT clause:

SELECT cntr.code, ctgr.id, total, cnt

The whole query is written as follows:

FROM (Countries cntr, Categories ctgr)
WHERE (cntr <- country <- Customers > 0)
 Collection grp =
 FROM OrderParts op
 WHERE op -> order -> customer -> country = cntr
 AND op -> product -> category = ctgr
 AND op.date = 2007
 double total = SUM (grp.price)
 integer cnt = COUNT (grp -> order)
SELECT cntr.code, ctgr.id, total, cnt

In the case we need more detailed analysis it is possible to choose other level concepts along the
dimension paths. If we move down in the graph and choose a sub-concept then this operation is
normally called drill down. If we move up and choose a super-concept along this dimension path then
this operation is called roll up.

6 Related Work
CoM allow for modelling the hierarchical structure of its elements which is called physical structure.
In this sense it is analogous to the classical hierarchical data model where elements are related to each
other using one-to-many parent-child relationship. The main difference of CoM is that its hierarchical
structure is intended for identity modelling, i.e., we use the hierarchy for modelling how data items are
represented and accessed. In particular, using the inclusion hierarchy we can define the structure of
complex references used to uniquely identify elements of the model. However, this structure is not
used to represent data semantics. Thus CoM allows us to use all the numerous advantages of having a
hierarchy at the same time providing other techniques for modelling data semantics.

In CoM, data elements can reference each other within logical structure. Such connections can be
viewed as a network of data elements and in this sense CoM is similar to the network data model. The
main difference of CoM is that its connections represent ordering relation among elements rather than
an arbitrary graph. Another difference is that elements in CoM exist in a hierarchy as described above.
Thus CoM provides two orthogonal structures: physical hierarchy and logical ordering. Physical
hierarchy describes how elements are represented and accessed while ordering represents data
semantics. Thus CoM combines features inherent to both hierarchical and network models. The
navigational features of CoM make it similar to the functional data model (FDM) [Shi81, Gra99,
Gra04].

 35

If we ignore the order of elements and consider them as members of sets without hierarchies then
CoM is analogous to the relational data model (RM) [Cod70]. In particular, CoM allows for relational
operations over its elements if we interpret concepts as relations. For example, it is possible to apply
join operations to concepts by producing new sets of items. The main difference of CoM in
comparison with the relational model is that CoM relies on ordering relation when describing model
syntax and semantics while the relational model manipulates sets only. Thus we reach a synergy effect
in the concept-oriented model by taking all the best from the classical models and implementing
different mechanisms using very simple and intuitive principles.

One important difference between CoM and RM is the treatment of data types. RM divides the whole
structure into data types and relations (which then can be defined using different domains). Thus on
one hand we can develop a structure of data types, for example, using inheritance as it is done in OOP.
An on the other hand we develop a structure of relations. However, this division is not symmetric
because RM concentrates mainly on relations while data types are in great extend an auxiliary facility.
In CoM, such a division does not exist. However, we introduce duality between identity modelling
performed via physical structure and entity modelling expressed in logical structure. Informally, if
projected in terminology of RM, physical structure in CoM can be used to model data types in RM
while logical structure in CoM can be used to model relations in RM. This division is symmetric and
both structures are equally important for the concept-oriented model. In other words, identity
modelling is integral part of CoM where we define the structure of our data space using inclusion
relation and a hierarchy of data items. Logical structure in CoM is used to define data semantics which
is essentially absent in RM.

One problem of RM is that it is flat model because all relations have equal rights, i.e., they are
members of one collection. However, most problem domains have normally rather complex structure
which has to be represented via a flat set of relations. This problem can be viewed as another side of
the advantages obtained from the flat system of relations. Historically, the hierarchical model and the
network model provided rather good means for describing a structure however these methods were too
restrictive or too complex. RM switched to a flat system of relations and gained simplicity however
such an approach did not supported directly hierarchies and other structures which are widely used in
practice. As a response to this demand various modifications to RM have been developed with the
purpose to support structured designs. One of the most known extensions consists in introducing
relation-valued attributes (rather than only scalar-values). This extension looks very natural because in
most designs the modeller deals with properties which take a value which is itself a set. Moreover, the
members of this set are complex elements which have their own properties. For example, a customer
could be characterized by a set of orders and then each order is characterized by a set of product items.
Thus the nested-relation approach aims to reflect such a problem domain design directly in the model
rather than to model this situation manually using numerous auxiliary relations and complex queries.
This model provides a generalization of RM by hiding the underlying structure of relations which are
used to specify queries. The main goal consists in working with relations obtained from queries
directly as attribute values rather than as selections produced by complex queries involving many
relations.

CoM provides a natural solution to this problem based on de-projection operation which allows for
retrieving sets of items associated with this item. Thus CoM retains the original design where the
problem domain is described using a number of concepts at the same time providing a very easy and
natural way for working with multiple-valued attributes in a nested manner. For example, in nested
relation model if a customer has many orders then it can be expressed as follows:

Customer(
 id: INTEGER,
 name: CHAR(64),
 orders: SET OF (id: INTEGER, date: DATE, price: MONEY ...)
)

Notice that here attribute orders is a relation-valued attribute defined via SET OF. Such a schema
can be queries using an extended SQL which allows for predicates and operators applied to relation-
valued attributes. For example, we could select all customers having orders with some concrete date:

SELECT id FROM Customer WHERE orders.date = '31.12.2007'

Notice that here we use dot notation to access attributes for the nested relational value. If we add an
additional condition imposed on set-values then they can be interpreted ambiguously. For example,
the following query has at least two natural interpretations:

 36

SELECT id FROM Customer WHERE
 orders.date = '31.12.2007' AND
 orders.price = 100

The first interpretation will return customers who have among their orders at least one with the
specified date and at least one with the specified price. The second interpretation will return customers
who have among their orders at least one record with the specified date and the specified price. More
complex queries have even more problems with their interpretations which can be overcome but
significantly increase complexity of the whole approach. In particular, such difficulties appear for
many-to-many relationships. Normally, it is necessary to choose an order among relations so that they
become unequal. Different clauses in SQL queries correlate and are ambiguous.

CoM does not have such problems because we work directly with concepts and de-projection
operation which avoid ambiguity. For example, the following query returns all customers who have at
least one order with the specified date and at least one order with the specified price:

SELECT id FROM Customer c WHERE
 c <- customer <- (Order o | o.price = 100) > 0 AND
 c <- customer <- (Order o | o.date = '31.12.2007') > 0

The next query returns all customers having at least one order with the specified date and price in two
fields:

SELECT id FROM Customer c WHERE
 c <- customer <- (Order o |
 o.date = '31.12.2007' AND o.price = 100) > 0

Another problem of RM is the absence of canonical semantics. As a consequence it is possible to
produce very different designs which are equivalent but cannot be formally compared. Thus RM
provides very limited facilities for analysing different syntactic designs and data semantics (it is aimed
mainly at providing algebraic operations for producing new relations from existing ones). The
mechanism of normalization provided by RM proposes several standard forms which have different
properties but it does not allow us to say what is the meaning of the data and how different databases
can be compared. One solution to this problem consists in providing a kind of universal representation
which would hide all possible table designs and could be used as a high level of data view. This view
would allow representing databases in a universal canonical form and compare their semantics.

As a response to this demand a special modification of the relational model was developed which is
called the universal relation model (URM) [Ken81, Fag82, Mai84]. This model allows viewing the
database as if it were composed of a single relation while all other information embedded into
attributes. Having one relation at high level allows us to avoid ambiguity when interpreting different
databases and therefore such a relation is called universal. In URM all relations are assumed to be
projections of a single relation. However, this direction did not result in an acceptable solution
because some things become simpler while others become more complex. One reason is that an
assumption of universal relation was shown to be incompatible with many aspects of the relational
model within which it was being developed.

In CoM, bottom concept can be viewed as a universal relation because it contains all the dimensions
and the most specific data items which can be used to access all the other information in the model. It
possesses canonical semantics so that data from different models can be represented in one form
which allows for comparisons. It makes it possible to define such more complex mechanisms as
constraint propagation and inference.

Thinking in terms of attribute-values is very natural for describing elements however originally this
approach has only one level while most problem domains are described using a hierarchy. Although
the relational model can be used for describing very different structures including a hierarchy, it is
desirable to have an approach which would allow doing this at the level of the model itself. In other
words, since the world is described using hierarchies it is necessary to reflect the hierarchy in the
model used to describe the world. There exist different approach to multidimensional modelling most
of which are based on the notion of dimension and data cube [Li96, Agr97, Gys97, Ngu00, Tor03,
Mal06]. Dimensions allow us to introduce levels of details while data cube is a collection of facts.

CoM can be viewed as a development of this direction because it also allows for treating data as
existing in a multi-dimensional space. However, the main difference of CoM is that it is an integrated
model rather than a mechanism for introducing dimensions into some existing (logical) model. In

 37

other words, CoM is independent of any other model (although can be implemented over some
existing model) while multi-dimensional models normally are defined as a new conceptual level over
some model. Dimensions in CoM are a primary element of the model which then determines all the
other properties and mechanisms. Dimensions are associated with ordering relation which is a corner
stone of the concept-oriented approach. In CoM, we start from ordering elements using dimensions
and then define their semantics and other properties. The traditional approach consists in establishing
a new abstract level over some other model (normally relational model) so that the basic mechanisms
are taken from the relational model while multi-dimensionality and other mechanisms are added as an
additional feature. Although the underlying level (RM) is used only as physical storage it still
influences how the multi-dimensional level is organized.

One of main features of CoM is that it is based on the theory of ordered sets, i.e., ordering relation
play major role in determining the model properties and mechanisms. In this sense it is similar to
formal concept analysis (FCA) [Gan99]. One general difference between CoM and FCA is that formal
concepts in FCA are defined from the incidence relation which is analogous to primitive semantics in
CoM.

Concept structure in CoM makes this approach similar to ontologies [Fen04]. Ontologies is an
approach to data and knowledge representation using concepts and relationships between them which
allows also reasoning about the elements of the problem domain. In comparison to CoM, ontologies
are more complex and involve more basic notions and mechanisms. One feature of CoM is that it
provides two orthogonal structures for modelling – physical and logical, and it is based on ordering
relation while ontologies hierarchies of classes which are similar to object-oriented approach.

7 Conclusions
In this paper we described a new approach to data modelling which incorporates a number of novel
aspects. The main of them is the notion of nested ordered set which generalizes conventional ordered
sets and is the formal basis for the two-level concept-oriented model. Another novel aspect is the
mechanism of syntactic constraints which allows us to restrict the structure of child elements from
parent elements of a nested ordered set. Our next contribution is the development of the notion of data
semantics which allows us to assign a meaning to the whole model and then treat and manipulate it as
one construct. We also define operations with data such as projection and de-projection, developed the
mechanism of constraint propagation and studied the notion of dependencies and inference. These
formal properties can be applied to very different data modelling problems like grouping and
aggregation or multi-dimensional analysis.

The concept-oriented model has many features of the exiting models. It allows the modelling to
describe hierarchies like in the hierarchical data model. It supports data connectivity as it is done in
the network model. It can use relational operations to manipulate data as it is done in the relational
model And it provides facilities similar to multi-dimensional databases. Another amazing feature of
CoM is that it is able to resolve the impedance mismatch [Coo06] existing between data manipulation
and programming language abstractions because programmers normally tend to encapsulate business
logic into object while most of data is stored in a database. CoM is based on the same principles as the
concept-oriented programming and hence these approaches are very similar. Half of CoM – physical
structure of identity mode – is precisely what is studied in CoM. Thus we can manipulate data
elements in CoM as if they were objects in CoP. CoM in this sense simply adds data semantics and
semantic operations to normal objects.

Like for any emerging technical trend, we described only main principles and mechanisms. Therefore
many of them can probably change in future and many new mechanisms and features will be
developed. In particular, we are going to work in the direction of closer integration of CoM with CoP
by developing languages for data and code description.

8 References
[Agr97] Agrawal, R., Gupta, A., and Sarawagi, S. (1997). Modeling multidimensional databases. In

13th International Conference on Data Engineering (ICDE’97), 232-243.

[Cod70] Codd, E.F. (1970). A relational model of data for large shared data banks. Communications
of the ACM, 13(6), 377-387.

[Coo06] W. R. Cook, A. H. Ibrahim. Integrating Programming Languages and Databases: What is the
Problem? ODBMS.ORG, Expert Article, Sept. 2006.

 38

[Fag82] Fagin, R., Mendelzon, A.O., Ullman, J.D. (1982). A Simplified Universal Relation
Assumption and Its Properties. ACM Trans. Database Syst., 7(3), 343-360.

[Fen04] D. Fensel, Ontologies: a silver bullet for knowledge management and electronic commerce.
Springer, 2004.

[Gan99] Ganter, B., and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations.
Springer.

[Gra99] Gray, P.M.D., King, P.J.H., and Kerschberg, L. (eds.) (1999). Functional Approach to
Intelligent Information Systems. J. of Intelligent Information Systems, 12, 107–111.

[Gra04] Gray, P.M.D., Kerschberg, L., King, P., and Poulovassilis, A. (eds.) (2004). The Functional
Approach to Data Management: Modeling, Analyzing, and Integrating Heterogeneous Data.
Heidelberg, Germany, Springer.

[Gys97] Gyssens, M., and Lakshmanan, L.V.S. (1997). A foundation for multi-dimensional
databases, In VLDB'97, 106-115.

[Ken81] Kent, W. (1981). Consequences of assuming a universal relation, ACM Trans. Database
Syst., 6(4), 539-556.

[Li96] Li, C. and Wang, X.S. (1996). A data model for supporting on-line analytical processing,
Proc. Conference on Information and Knowledge Management, Baltimore, MD, 81-88.

[Ngu00] T.B. Nguyen, A.M. Tjoa and R.R. Wagner, An Object Oriented Multidimensional Data
Model for OLAP, Proc. 1st International Conference on Web-Age Information Management
(WAIM'00), Shanghai, China, June 2000.

[Mal06] E. Malinowski, E. Zimanyi, Hierarchies in a multidimensional model: from conceptual
modeling to logical representation, Data & Knowledge Engineering 59(2), 348 – 377, 2006.

[Mai84] Maier, D., Ullman, J.D. and Vardi, M.Y. (1984). On the foundation of the universal relation
model. ACM Trans. on Database System (TODS), 9(2), 283-308.

[Sav04] Savinov, A. Principles of the Concept-Oriented Data Model, Technical Report, Institute of
Mathematics and Informatics, 54pp., 2004.

[Sav05a] Savinov, A. Hierarchical Multidimensional Modelling in the Concept-Oriented Data Model,
3rd Intl. Conference on Concept Lattices and Their Applications (CLA’05), Olomouc, Czech
Republic, 123-134, 2005.

[Sav05b] Savinov, A. Logical Navigation in the Concept-Oriented Data Model, Journal of
Conceptual Modeling, Issue 36, 2005, http://www.inconcept.com/jcm.

[Sav05c] Savinov, A. Concept as a Generalization of Class and Principles of the Concept-Oriented
Programming. Computer Science Journal of Moldova, 13(3), 292-335, 2005.

[Sav06a] Savinov, A. Grouping and Aggregation in the Concept-Oriented Data Model. In Proc. 21st
Annual ACM Symposium on Applied Computing (SAC’06), Dijon, France, 482-486, 2006.

[Sav06b] Savinov, A. Query by Constraint Propagation in the Concept-Oriented Data Model.
Computer Science Journal of Moldova, 14(2), 219-238, 2006.

[Sav07a] Savinov, A. Concepts and their Use for Modelling Objects and References in Programming
Languages. Technical Report RT0004, Institute of Mathematics and Computer Science,
Moldavian Academy of Sciences, 43pp., 2007.

[Sav07b] Savinov, A. An Approach to Programming Based on Concepts. Technical Report RT0005,
Institute of Mathematics and Computer Science, Moldavian Academy of Sciences, 49pp.,
2007.

[Sav08a] Savinov, A. Concept-Oriented Model. Encyclopedia of Database Technologies and
Applications, 2nd Edition, Editors: Viviana E. Ferraggine, Jorge H. Doorn, Laura C. Rivero,
IGI Global, 2008 (accepted)

[Sav08b] Savinov, A. Concepts and Concept-Oriented Programming. Journal of Object Technology,
2008 (accepted).

 39

http://www.inconcept.com/jcm

[Sav08c] Savinov, A. Concept-Oriented Programming. Encyclopedia of Information Science and
Technology, 2nd Edition, Editor: Mehdi Khosrow-Pour, IGI Global, 2008 (accepted)

[Shi81] Shipman, D.W. (1981). The Functional Data Model and the Data Language DAPLEX. ACM
Transactions on Database Systems, 6(1), 140–173.

[Tor03] R. Torlone, Conceptual multidimensional models, In: Multidimensional Databases: Problems
and Solutions, Maurizio Rafanelli Ed. Idea Group, 69–90, 2003.

 40

	1 Introduction
	2 One-Level Data Model
	2.1 Labelled Ordered Sets
	2.2 Interpretations of Ordering Relation
	2.3 Representation of Labelled Ordered Sets
	2.4 Operations with Elements

	3 Two-Level Data Model
	3.1 Nested Ordered Sets
	3.2 Syntactic Constraints
	3.3 Multidimensional Hierarchical Space

	4 Operations with Model Semantics
	4.1 Representing Model Semantics
	4.2 Projection and De-Projection
	4.3 Constraints and their Propagation
	4.4 Dependencies and Inference

	5 Uses of the Model
	5.1 Query Language
	5.2 Multi-Valued Properties
	5.3 Grouping and Aggregation
	5.4 Multi-Dimensional Analysis and OLAP

	6 Related Work
	7 Conclusions
	8 References

