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The paper describes logical navigation in the concept-oriented data model. This model 
explicitly and formally separates physical structure and logical structure so that each 
element of the model is simultaneously a collection and a combination of other elements. 
The physical structure is used to representing and access by elements by means of 
references. The logical structure is used to reflect the problem domain dependencies. The 
two-level model considered in the paper consists of a set of concepts and a set of items. 
Concept structure defines the model syntax while item structure defines its semantics. In 
the paper it is shown how the properties of the model can be used for logical navigation 
where we do not need to specify join conditions or other complicated parameters of 
queries.  

1. Introduction  
One of the main achievements of the relational model of data proposed in [Codd, 1970; 
Garcia-Molina et al., 2003] is that it provides a solution of the problem of physical 
navigation, which existed in the previous models. However, it is recognized [Kent, 1981] 
that it fails to solve the problem of logical navigation. This means that the user still has 
to specify concrete access paths in order to get a correct result set. In other words, even 
though a data item is not physically bound to some access path we still need to encode a 
logical access path in each query which describes how this item is reached. In SQL query 
language this means the necessity to have long and complex join conditions to be a part 
of each query. Such join statements specify all intermediate tables and the corresponding 
join conditions. In contrast, if the mechanism of logical navigation could be incorporated 
into a data model then we would need only to specify constraints for the source data 
items and indicate the type of target items possibly with some additional hints in the 
case of complex data structure or ambiguous queries. All the rest is then done by the 
database itself. In particular, it will propagate the constraints and build intermediate 
relationships between data items.  

For example, assume that we have a data model consisting of 100 data types. Then we 
might issue a query like “retrieve all ‘Students’ related to ‘Prof. Smith’ via course ‘Data 
models’”. Here the database should understand that we are talking about Students, 
Instructors and Courses. It also understands that only two items have to be considered 
(‘Prof. Smith’ from Instructors and ‘Data models’ from Courses) and these constraints 
need to be appropriately propagated. After that the database has to identify all 
intermediate types that relate the source types with the target type. And then it has to 
automatically build all necessary join conditions. Finally it builds the access path which 
will retrieve the requested data items. If we were using SQL then we would have to do all 
this ourselves with all possible types of errors.  

This problem of automating logical navigation is directly considered in the universal 
relation model (URM) [Fagin et al., 1982; Kent, 1981; Maier et al., 1984]. The idea of 
this model is that it is possible to introduce the notion of the universal relation which will 
contain the complete model semantics. Once we have such a universal representation 
(implicitly or explicitly) we can answer all queries without the need to specify explicitly all 
numerous complex join conditions. In this approach it is assumed that all attribute 
names have unique names with global meaning and for each set of attributes there is 
one basic relationship that the user has in mind (called the connection). Although the 
URM solves some problems its assumptions and their consequences are frequently not 
satisfied even for relatively simple and useful database configurations.  

Another solution for the problem of logical navigation is provided by the Microsoft WinFS 
system which is based on the Object-Role Modelling (ORM) approach [Halpin, 1999]. 
Items in WinFS are related via facts which are relationship instances. Once data items 
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have been connected the system answer simple queries by automatically finding related 
data items.  

In this paper we describe how the problem of logical navigation is solved in the concept-
oriented model (COM) [Savinov, 2004; Savinov, 2005]. This model makes several 
assumptions about the nature of data and its semantics. One principle similar to that 
postulated in URM is that the whole model is viewed as one global construct with 
concrete canonical syntax and semantics. In other words, we do not consider parts of the 
model (like tables) as primary constructs which then can be used to build different new 
constructs. Instead, we see the model as one global construct with some constituents 
and all manipulations with data are viewed as operations with the global semantics.  

We also assume that an important characteristic of any system or model is its 
dimensionality (degrees of freedom). In the concept-oriented model we go further. It is 
not only multidimensional but also hierarchical. This means that the model as whole is 
characterized by its primitive or canonical dimensionality as well as by the rank, which is 
the maximal depth of dimension hierarchy. Using this approach we can express the 
canonical semantics of the model in terms of points in the universe of discourse where 
each point is represented by some data item. In the sense of hierarchical dimensionality 
modelling this approach is similar to OLAP [Berson & Smith, 1997].  

In order to describe such a multidimensional and hierarchical space we order all concepts 
by means of subconcept-superconcept relation. In this case each concept has a number 
of superconcepts (identified by the dimension names) and a number of subconcepts. The 
directed acyclic graph of concepts is complemented by the top concepts and the bottom 
concept, which represent the most abstract and the most detailed levels of the model. 
This method is similar to that used in concept-lattices and formal concept analysis (FCA) 
[Ganter & Wille, 1999] and ontologies [Fensel, 2004].  

Once the syntactic structure of the model has been defined it can be used to automate 
query formation and data access. In other words, if all the concepts in the model are 
connected and the semantics is defined by their items we can use this structure to easily 
get related items. No additional information like join criteria, manual projection and 
constraint propagation is needed. For logical navigation in the concept-oriented model we 
propose the mechanism of dimensions and inverse dimensions. Dimension is always 
single-valued and leads to a superconcept in the graph. Inverse dimension is always 
multiple-valued and leads in the opposite direction to a subconcept. By applying them 
consecutively we can build an access path. Such an approach is close to that used in the 
functional data model (FDM) [Shipman, 1981; Gray et al, 1999; Gray et al, 2004]. 
Access paths and multidimensional queries can be defined as derived properties of 
concepts and then used just like normal dimensions.  

In order to demonstrate the mechanism of logical navigation we will use an example 
shown in Fig. 1. It is assumed that there exist a number of users who may create 
auctions and make bids. Each auction is created at some date by some user and for 
some concrete product from some category. Each auction bid has some price, is made by 
some user at some date for some auction.  
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Fig. 1. At the logical level the problem domain is represented by a directed acyclic graph 
of concepts where each concept has a number of superconcepts and a number of 
subconcepts.  

 



2. Physical Structure of the Model  
Each element in the concept-oriented model is a physical composition of other elements. 
By physical composition we mean that the element directly stores other elements (by 
value or by reference) and knows its own composition while the stored elements may not 
know directly where they are stored and what other elements use them. We separate 
two dual types of element composition: collections and combinations.  

Collection is a number of elements interpreted as a set. We denote a collection by 
enclosing its elements into curly brackets: },,,{ 21 ncccC K= . This type of collection is 
called a physical collection in order to distinguish it from logical collections described 
below. Elements within a collection are identified by means of its references.  

It is important that physical collections in the concept-oriented model are used to provide 
physical access to all elements and this is why they have a hierarchical structure. This 
structure is then used to implement references which uniquely identify elements within 
collections. A complex reference is a sequence of segments where each segment 
identifies an element within its physical collection. An element cannot change its parent 
physical collection during its life time, i.e., it is created, manipulated and deleted within 
one parent physical collection.  

We distinguish several types of models depending on their physical structure:  

• One-level model consists of one root physical collection which contains a set of 
data items. This model is interesting mostly from theoretical point of view.  

• Two-level model consists of one root element which physically includes a set of 
concepts which in turn include a set of items. This model will be considered in this 
paper.  

• Multi-level model have an arbitrary hierarchy which starts from one root element 
and then may physically include any number of internal elements. This model is 
considered as the basis for the concept-oriented mark-up language which is not 
considered in this paper.  

Two-level concept-oriented data model has a physical structure consisting of one root 
element R, which consists of a set of concepts },,,{ 21 nCCCR K= , each of which in turn 
consists of a set of data items },,{ 21 KiiC j = .  

A physical structure of the two-level model is shown in Fig. 2. It consists of one root 
element which includes 8 concepts which in turn include data items called also concept 
instances. Note that data items cannot change their physical position, i.e., if a data item 
has been created within concept Products, it will belong to this concept until it is 
deleted. This guarantees that access to this item via its reference is possible at any time 
(changing location in the physical hierarchy means changing reference).  

One subtle moment here is that the physical structure itself cannot use references 
because its main function consists in implementing the mechanism of references. Thus 
the physical structure of the concept-oriented model is supposed to provide a mechanism 
of representation and access for all other (logical) needs. And this is why we cannot use 
this mechanism for representation of the problem domain laws.  
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Fig. 2. Physical structure of the problem domain for the two-level model. Each concept is 
physically included into the root element and each item is physically included into one 
concept.  



3.  Logical Structure of the Model  
In addition to physical collection we consider also combinations as a method of 
composition of other elements. Combination is a number of elements interpreted as an 
object. We denote a combination by enclosing its elements into angle brackets: 

〉〈= noooE ,,, 21 K . If an element belongs to a combination then we write it as follows: 

Eo j  < , nj ,,2,1 K= . Elements within a combination are identified by means of their 

ordered positions. Positions are known in advance and are explicitly used for accessing 
and manipulating data in queries or programs but they cannot be stored in data. 
Elements of collections are identified by unordered references which are not manipulated 
explicitly but they are stored as the data contents. (This has some exceptions such as 
well known references for bootstrapping purposes.) Shortly, positions are elements of 
code (of program, query or other type of code), while references are elements of data (of 
objects, records or other types of data).  

It is one of the main original assumptions of the concept-oriented paradigm that any 
element has two parts:  

• it is a physical collection of other elements (collectional part), and  

• it is a combination of other elements (combinational part).  

Thus it can be represented as a pair of one collection and one combination: 
〉〈= nm ooocccE ,,,},,,{ 2121 KK . One or both parts can be empty.  

It is important that in contrast to the physical collections the combinational part of any 
element can be changed during its life time. Thus the definition of any element as a 
combination of other elements changes if we need to change the model. Moreover, most 
syntactical and semantic properties of the COM are determined by the combinational part 
of its elements while collectional part is used to implement the mechanism of physical 
representation and access (references). The properties of the model defined by 
combinational part of its elements are called the logical structure because we can easily 
change these properties independent of the hierarchical physical structure. Note that an 
element does not know directly what elements are included into its logical collection 
(their references are not stored in this element description).  

Fig. 1 shows logical structure of the two-level model where concepts are boxes with 
arrows pointing to the concepts in their combinational part. For example, element 
Auctions is a combination of three other elements of this model Users, Dates and 
Products although physically all the four elements are members of one common root 
element. Later we can change this combination, e.g., by defining Auctions as a 
combination of four other elements from the model and hence we change the logical 
structure of the model while at the physical level the structure does not change because 
all these elements are members of the root.  

From the point of view of logical structure each element is considered as a combination 
of some other elements (and this composition may change at any time). It is an 
important principle of the concept-oriented model that any combination of elements can 
be interpreted dually as a logical collection. Formally, if element C is a member of 
combination 〉〈= KK ,,CO  then O is a member of logical collection },,{ KK OC = . If we 
denote collection C and combination O as two nodes in a graph then the two types of 
membership can be shown as two opposite arrows: CO >  (membership in a logical 
collection) and OC <  (membership in a combination). We will follow a convention that 
combinations are drawn below their elements and collections are drawn above their 
elements.  

For example, concept AuctionBids in Fig. 1 is a combination of concepts Prices, Users, 
Dates and Auctions. Dually, concept Users is a logical collection of concepts Auctions 
and AuctionBids. Thus incoming arrows from all elements below the current element 
denote elements from the logical collection. All outgoing arrows to all elements above the 
current element denote elements from the combination. Data items have the same 
structure as concepts except that they physically live within concepts rather than in the 
model root. In particular, an item is defined as a combination of other items but dually it 
is a collection of items where it participates in combinations. For example, a user item is 



a logical collection of several auction items and several auction bid items because both 
auctions and auction bids include user in their combinational part.  

4. Syntax and Semantics of the Model  
Syntax of the two-level model is described by the logical structure of its concepts while 
semantics is described by the logical structure of its items. In other words, at the 
syntactic level we define the combinational part for concepts while at the semantic level 
we define the combinational part of items.  

A concept is combination of other concepts from this model:  

〉〈= nCCCC ,,, 21 K   

Concepts nCCC ,,, 21 K  are called superconcepts of rank 1. Concept C is called subconcept 

of rank 1. For example, Categories is a superconcept for concept Products, and 
Products is a subconcept for concept Categories. Superconcepts are positioned above 
subconcepts in the concept graph.  

Concept definition establishes a subconcept-superconcept relation between concepts:  

jCC > , nj ,,2,1 K=   

Cycles in this relation are not permitted. (In practice we can easily permit loops with 
special assumptions.)  

If a concept does not have superconcepts then it is assumed to be a special top concept 
T. If a concept does not have subconcepts then it is assumed to be a special bottom 
concept B. Direct subconcepts of the top concept are called primitive concepts. Top 
concept is a direct or indirect superconcept for all other concepts, i.e., all concepts are 
logically included into the top concept collection. Bottom concept is direct or indirect 
subconcept for all other concepts and it directly or indirectly combines all other concepts 
in the model. For example, in Fig. 1 there are four primitive concepts Prices, Users, 
Dates and Categories; and AuctionBids is the bottom concept.  

If one of two concepts is a direct or indirect superconcept of another then they are called 
syntactically dependent or parallel concepts representing different levels of details; 
otherwise the two concepts are referred to as syntactically independent or orthogonal. In 
particular, all primitive concepts are syntactically independent.  

Each superconcept has a uniquely identified position within concept definition, which is 
called dimension (of rank 1 or local dimension): 

〉〈= nn CxCxCxC :,,:,: 2211 K   

Here superconcepts nCCC ,,, 21 K  are called domains for dimensions nxxx ,,, 21 K : 

)Dom( jj xC = . All dimensions nxxx ,,, 21 K are unique and are used for logical navigation 

and querying while some concepts within the combination 〉〈 nCCC ,,, 21 K  can be the 

same, i.e., dimensions may have one and the same domain. Normally dimensions 
(concept positions within a combination) are identified by names or integer values. For 
example, concept AuctionBids has four dimensions price, user, date, and auction 
which identify upward arrows leading to the corresponding domain superconcepts.  

A dimension of rank k is a sequence of k dimensions of rank 1 separated by dots where 
each next dimension in the sequence belongs to the domain of the previous one:  

kxxx ... 21 L , where )Dom( 1−jj xx < , nj ,,2,1 K=   

Dimensions will be frequently prefixed by the first concept corresponding to the first 
dimension in the sequence: 

kxxxC .... 21 L , Cx <1  

Also we frequently will use the terms dimension and domain interchangeably. We will use 
a convention where concept names are used in plural and capitalized while dimension 
names are used in singular and written in lower case. For example, Auctions is a 
concept while auction is a dimension of concept AuctionBids.  



Primitive dimension has a primitive domain (of the last element in the sequence). The 
number of all primitive dimensions of a concept is referred to as the concept primitive 
dimensionality. The primitive dimensionality of the model is that of the bottom concept. 
The maximal rank of a primitive dimension of a concept is referred to as the concept 
rank. The rank of the model is that of the bottom concept. Thus each model is 
characterized by its dimensionality (width of multidimensional space) and its rank (depth 
of the hierarchy).  

For example, concept AuctionBids has a dimension 
AuctionBids.auction.product.category which has rank 3.This dimension is primitive 
because its domain Categories is a primitive concept. This model has dimensionality 6 
because the bottom concept AuctionBids has 6 primitive dimensions (6 different paths 
in the concept graph from bottom to top). It has rank 3 (for comparison, the flat 
multidimensional space has rank 1 because it consists of primitive concepts and one 
common subconcept with all primitive dimensions).  

Dually, each concept is a logical collection of its subconcepts:  

},,,{ 21 nSSSC K=   

Here C is a superconcept of rank 1 and nSSS ,,, 21 K  are subconcepts or rank 1. For 

example, concept Dates is a logical collection of Auctions and AuctionBids (which are 
syntactically dependent or parallel concepts).   

An inverse dimension is a dimension with the opposite direction. We denote inverse 

dimensions by enclosing the corresponding dimension into curly brackets. If kxxx ... 21 L  is 
a dimension of rank k then }...{ 21 kxxx L  is an inverse dimension of the same rank k. In 
contrast to dimensions which identify superconcepts, the role of inverse dimensions is 
dual – they identify subconcepts. The domain of inverse dimension is the very first 

concept in the sequence, i.e., if }....{ 21 kxxxC L  is an inverse dimension then C is its 
domain. For example, concept Products has one inverse dimension of rank 1 
{Auctions.product} with the domain in Auctions and one inverse dimension of rank 2 
{AuctionBids.auction.product} with the domain in AuctionBids.  

The number of inverse dimensions of a concept with the domain in the bottom concept is 
referred to as the concept primitive inverse dimensionality. The primitive inverse 
dimensionality of the model is that of the top concept. The model primitive 
dimensionality is equal to the model primitive inverse dimensionality because both 
primitive dimension and inverse primitive dimension are represented by some path 
between top and bottom concepts. For example, the top concept has 6 inverse 
dimensions with the domain in AuctionBids.  

Such a structure of concepts can be represented by a concept graph where nodes are 
concepts and edges are instances of the subconcept-superconcept relation jCC >  

identified by dimensions. Each path in the concept graph consisting of k edges leads from 
the source concept to a superconcept of rank k. Such a path is interpreted as a dimension 
of rank k, which is identified by a sequence of k local dimensions. The model 
dimensionality and inverse dimensionality is the number of paths from the bottom to the 
top and from top to the bottom, respectively. There may be several different paths 
between a concept and a superconcept.  

Semantics of the two-level model is described by the structure of its items. In general 
case without syntactic constraints an item is a combination of other items or nulls if they 
are allowed:  

〉〈= niiii ,,, 21 K , jii > , ii j <   

Items niii ,,, 21 K  are called superitems of rank 1. Item i is called subitem of rank 1. Thus 

each item is a combination of its superitems and a logical collection of its subitems.  

In the presence of syntactic constraints each item (physically) belongs to one concept 
where it is called an instance of this concept. In this case each item can combine only 
superitems from its superconcepts (rather than any other items):  



〉〈= niiii ,,, 21 K , where 〉〈=∈ nCCCCi ,,, 21 K  and jj Ci ∈   

Using syntactic constraints we can effectively restrict possible items of a concept. For 
example, concept AuctionBids has 6 primitive dimensions and theoretically its instance is 
a combination of any primitive items. However, the syntax effectively restricts possible 
auction bids by only combinations of items from its 4 superconcepts. In particular, an 
auction bid may use only available auctions from concept Auctions rather than any 
combination of user, date and product (from the definition of each auction).  

What is an item semantically? In the concept-oriented approach each element is 
physically characterized by its reference (identifier or location in the parent physical 
collection) and logically it is characterized by a combination of its superitems. Thus it is a 
combination of other items that provides a meaning for an item. In other words, each 
combination of items in the model has its unique meaning. In this sense, in order to get 
an item semantics we need to retrieve its superitems, however, these items themselves 
have their meaning encoded in other items and so on. In general case in the concept-
oriented model we follow the principle of globality of semantics which means that each 
item has its semantics distributed all over the model (all over other items). Hence the 
question is what part of the whole model semantics we want to retrieve.  

5. Access Paths and Derived Properties  

If Ci∈  is an item and kxxxx ... 21 L=  one of dimensions of concept C then 
kxxxixi ... 21 L→=→  is a projection of item i to C which is equal to a superitem referenced 

by i via dimension x. For example, an auction item could be projected to item ’porsche’ 
from concept Products and then to item ’cars’ from concept Categories. Note that 
projection is specified via dimension name rather than via target concept name in other 
approaches. This allows us to avoid ambiguity when logically navigating in data via 
logical paths. If I is a set of items from C then its projection along dimension x, xI → , is 
a set of items from the domain of this dimension referenced by items from I. Each item 
from projection is taken only one time. For example, a set of products with the same 
category will return a projection with one item only. If we need to get all items even if 
they occur more than once then dot operation has to be used instead of arrow.  

If i is an item from concept C and }...{}{ 21 kxxxx L=  one of its inverse dimensions of rank 

k with the domain S then }...{}{ 21 rxxxixi L→=→  is a de-projection of item i to S which is 
equal to a collection of subitems from S with projection in i. In other words, each item 
from de-projection references item i via intermediate items along path x: 

}|{}{ ixsSsxi =→∈=→ . For example, item ’dogs’ from concept Categories will be de-

projected to a set of auctions with products having this category via inverse dimension 
{Auction.product.category}. De-projection of a set of items is a union of de-
projections of each individual item.  

Access path is a sequence of dimensions or inverse dimensions separated by arrows or 
dots. Each next operation (projection or de-projection) is applied to all items returned by 
the previous segment.  

Access path consists of upward and downward segments in the concept graph. Upward 
segment (projection) corresponds to a dimension leading to a superconcept while 
downward segment (de-projection) corresponds to an inverse dimension leading to a 
subconcept. Thus access path can change its direction and has a zigzag form. It is 
important that access path is specified in terms of dimensions which denote paths in the 
concept graph. For example, we can fix a product item, then find its auctions, for which 
find their users and finally find the bids of these users. Such an access path for a product 
item i is written as a sequence of 3 segments:  

i->{Auctions.product}->user->{AuctionBids.user}  

Access path may have constraints, which restrict a set of items. The constraints are 
specified by predicate f  which returns true or false for each subitem from the domain of 

the inverse dimension:  

})(&|{)}(|:{ truesfixsSssfxSsi ==→∈=→→  



Note that the predicate f itself describes constraints by using dimensions, inverse 

dimensions or arbitrary access path. For example, in the last access path we might want 
to restrict auctions selected in the first segment by only the latest ones:  

i->{a in Auctions.product | a.date==today}->user->{AuctionBids.user}  

This access path starts from some product item, then selects today’s auctions for this 
product, then finds their users for which returns all their auction bids. To restrict auctions 
we introduced an instance variable a, which takes values from concept Auctions. It is 
important that these restrictions on selected auctions do not influence the concept 
Auctions so that the next segments can still use this concept with all its items. (In the 
next section it is shown how we can restrict items in the concept itself, which leads also 
to automatic constraint propagation.)  

The mechanism of access path is a convenience method which provides a simple 
mechanism for accessing data semantics (more general query method is described in the 
next section). It is especially useful for defining derived properties of concepts. A derived 
property is a named definition of a query formulated for a concept constrained by one 
current item when executed. The current item is denoted by the keyword this. For 
example, we might define a derived property as follows:  

〉→→→=〈= dcvuSbaxthispropCxCxCxC nn .}..{..,:,,:,: 12211 K   

Here we define a concept with n normal dimensions and one derived property prop. This 
property starts from the first dimension of the current item (denoted by keyword this) 
and returns a set of items according to the access path dcvuSba .}..{. →→ . (Dot and arrow 

for a single item return one and the same result and are equivalent.) In this way we can 
reformulate the earlier considered query as a concept property:  

Products.property1 = {Auctions.product}->user->{AuctionBids.user}  

This property can be used like any other dimension or inverse dimension of concept 
Products and it will return bids of users of auctions with given product. It is very 
convenient because we can directly apply other properties to this property or to use 
aggregation functions. For example, this property can be used to define the second 
property:  

Products.property2 = avg(this.property1.price)  

It returns mean price of all bids returned by the first property.  

In the next example, we would like to get all bids for an auction:  

Auctions.bids = {AuctionBids.auction};  

This simple property returns a collection of bids and it can be applied to any instance 
variable taking its values from a collection of auctions. For example, we might define a 
property that returns the maximal bid for an auction (or null):  

Auctions.maxBid = max(this.bids.price);  

Here max is an aggregation function applied to a collection of prices for bids returned by 
already defined property.  

Another example is where we want to get mean price for each category. This property 
can be defined as follows:  

Category.meanPrice =  
  avg( this.{AuctionBids.auction.product.category}.price );  

This property finds a collection of all bids for this category using an inverse dimension of 
rank 3 and returns their prices. This collection of prices is then passed to the aggregation 
function as a parameter. We can modify this query so that it returns the mean price for 
today:  

Category.meanPriceForTenDays =  
  avg( {ab in AuctionBids |  
    ab.auction.product.category == this &&  
    ab.auction.date == today }.price );  



Now let us suppose that we want to find all categories corresponding to one user. In this 
case we select one user and then this constraint is automatically propagated down till the 
bottom concept. This means that the database includes now only subitems of the 
selected user in concepts Auctions and AuctionBids. After that it is necessary to select 
a collection of categories. However, in this example the path cannot be chosen 
automatically because there are two alternatives: either to return categories 
corresponding to auctions (of this user) or to return categories corresponding to auction 
bids (of this user). Thus the query  

Users.categories = {c in Categories};  

is ambiguous and cannot be resolved automatically. In order to provide a hint to the 
database we can specify the necessary constraint propagation path explicitly:  

Users.auctionCategories = {c in Categories | Auctions.user == this };  

Users.bidCategories = {c in Categories | AuctionBids.user == this };  

Here it is clear that we want to propagate the constraints till the concept Auctions in the 
first query and till the concept AuctionBids in the second query. We might also write 
these queries by specifying explicitly the correct access path:  

Users.auctionCategories = this->{Auctions.user}->product.category;  

Users.bidCategories = this->{AuctionBids.user}->auction.product.category;  

Here we take the current user item, then de-project it to the correct subconcept 
(Auctions or AuctionBids) by specifying an inverse dimension, and then project the 
result collection to the target superconcept Categories.  

If it is necessary to find mean prices of user categories then we can simply combine the 
properties:  

Users.auctionCategoriesMeanPrice = Users.auctionCategories.meanPrice;  

Users.bidCategoriesMeanPrice = Users.bidCategories.meanPrice;  

These two queries will return mean price for a collection of categories returned by the 
previous property.  

The same approach can be used to impose semantic constraints on any concept. The idea 
is that in the definition of derived property we specify a predicate that must evaluate to 
true for each data item. For example, if we want to prevent users from making bids for 
their own auctions then it could be formulated as the following constraint:  

AuctionBids.myConstraint = (this.user != this.auction.user);  

Constraints can be thought of as normal derived properties that return logical values 
rather than items or collections of items. The only difference is that they are checked 
automatically in order to maintain consistency.  

As we already mentioned the mechanism of access paths is simple and efficient method 
for defining queries and derived properties. Each next collection along the path is built 
from the previous collection. For logical navigation this mechanism is especially 
convenient because it does not require any joins. Instead of manually joining this 
mechanism uses the syntactic structure of the model, i.e., the multidimensional and 
hierarchical structure of concepts in order to build a result collection. This structure is 
also used for automatic constraint propagation when we can impose constraints in one 
concept and then retrieve related items from another concept. All the rest is done by the 
underlying concept-oriented database engine.  

6. Multidimensional Queries  
The mechanism of access paths builds new collections by selecting items from another 
collection, which acts as a one-dimensional universe of discourse for the new collection. 
In general case we frequently want to build a new collection by selecting items from a 
multidimensional universe of discourse. In this case the universe of discourse to be used 
is described by specifying all the source collections. The Cartesian product of these 
source collections is then considered the universe of discourse for a new collection 
produced by a query.  



Multidimensional query has the following format:  

)},,,(|,,,{ 212211 nnn cccfCcCcCcC KK ∈∈∈=   

Here in the first part before the bar we describe a set of source concepts and their 
instance variables, which define the universe of discourse of this query nCCC ×××=Ω K21  
where each possible item is a combination of individual items Ω∈〉〈= nccc ,,, 21 Kω . In the 

second part after the bar symbol we specify constraints imposed on the items from the 
universe of discourse as a predicate f. The result collection includes items from the 
universe of discourse for which the predicate is true: true})(|{ =Ω∈= ωω fC . It is 

important that the new collection is a subconcept for all the source concepts/collections 
or, dually, the source concepts are superconcepts for the new collection. In particular, 
the source collections have to be built and exist before the items for the result collection 
can be chosen (before instance variables can be instantiated).  

For example, if we want to get all combinations of dates and categories then we specify 
concepts Dates and Categories as source collections of the query:  

{d in Dates, c in Categories}  

Here d and c are instance variables taking their values from collections Dates and 
Categories independently and hence the result collection will include all combinations of 
existing dates and categories.  

Elements of collection are represented by means of their own references, which are new 
and unique for each new collection. The items from the result collection then provide 
access to the original items. For example, the above two-dimensional collection includes 
items having their own unique references and two dimensions d and c leading to the 
corresponding superconcepts Dates and Categories. Thus any source concept plays the 
role of superconcept for the result collection.  

However, frequently we need to include some additional information as new dimension 
values for each item in the collection. This can be done by specifying them after the 
multidimensional query in angle brackets:  

〉〈∈∈∈= KKKK ),,,,()},,,(|,,,{ 211212211 nnnn cccvcccfCcCcCcC  

Here ),,,( 211 ncccv K  is a function that returns a single item given instance variables 

defined in the query body. Note that this function itself may include complex 
multidimensional queries and access paths applied to instance variables.  

For example, if for each combination of one date and one category described above we 
want to store also category mean price then we specify it as a value (defined in the 
previous section as a property) in angle brackets:  

{d in Dates, c in Categories}<c.meanPrice>  

This new collection will have three dimensions.  

It is important to understand that each use of curly brackets evaluates to an absolutely 
new collection, which is a new subconcept with respect to the source concepts. We can 
assign this new collection to a new variable or it can be used anonymously. For example, 

}|,,,{ 2211 LK nn CcCcCcC ∈∈∈=  defines a new collection with its reference stored in 
variable C. This new collection is a subconcept to the source collections nCCC ,,, 21 K , 

which are superconcepts. One important principle for building new collections is that all 
the source collections have to be already defined and constructed before the new 
collection (subconcept) can be built.  

The source collections can be themselves specified via independent queries rather than 
using references to existing concepts. For example, we might want to restrict a set of 
items in some source concepts and then we need to write it as a nested query:  

〉〈∈∈∈= KKKK ),,,,()},,,(|}|{,},|{},|{{ 21121222111 nnnnn cccvcccffCcfCcfCcC  

Here we did not show instance variables for nested collections, which might be written as 
follows:  

〉〈∈ K),()}(|{ 11 ivifCi  



Thus nested collections are normal collections just like their external collection where 
they are used. It is important that each nested source collection is evaluated before its 
external collection.  

For example, if we want to use only some interval of dates then we can describe it as 
follows:  

{d in {d in Dates | d > ’02.02.2002’}, c in Categories}  

Nested collections can also be used in the predicate part of the query but here they play 
a different role than the source nested collections. These collections are evaluated in the 
context of their external queries (rather than before the external query for source nested 
collections). In particular, the predicate nested collections can use instance variables 
from their external contexts. Thus for each collection its instance variables defined for 
source collections are visible from all internal collections in the predicate part. For 
example, in some internal collection we might impose constraints by using its own 
instance variables, its external collection instance variables and even instance variables 
from the parent query context.  

For example, let us suppose that we need to compute an average bid price for each 
combination of existing dates and categories. For each combination of dates and 
categories it is necessary to get a (nested) collection of all bids for which we can 
compute an average bid price. Such a query can be written as follows:  

{d in Dates, c in Categories |  
  NestedCollection = {ab in AuctionBids |  
  ab.date == d && ab.auction.product.category == c  
  }  
}<avg(NestedCollection.price)>;  

Here for convenience we assigned the nested collection to the internal variable. Then this 
internal variable computed for each combination of date and category is used in the 
output part of the query as a parameter for the aggregation function. Actually, here we 
used multidimensional de-projection, i.e., a two-dimensional point was de-projection to 
concept AuctionBids along two inverse dimensions. Such a multidimensional de-
projection returns all items from a subconcept that are projected to the given point. In 
this example, we want to return all auction bids with the current date and the current 
category. This can be written simpler by specifying two inverse dimensions (bounding 
paths) rather than only one:  

{ d in Dates, c in Categories }< 
  avg( this->{AuctionBids.date,  
              AuctionBids.auction.product.category}.price)>;  

Here this is a point from two-dimensional collection. This point is de-projected to 
concept AuctionBids by specifying an inverse dimension with two paths:  

this->{ AuctionBids.date, AuctionBids.auction.product.category }  

This de-projection includes all auction bids with the given date and category. After that 
we take property price for each auction bid of this collection and apply the aggregation 
function. Thus the result collection has three properties: date, category and average bid 
price for this date and category.  

As we already mentioned each new result collection is different from each of its source 
collections even if we use only one source collection. This new collection is a new 
subconcept which has its own independent set of items and their own references. For 
example, a collection }5.|{ =∈ propiCi  which selects items with the specified property has 

nothing to do with the source collection C. Its items will have different references and it 
will be a subconcept to C. In particular, it is important that C will still have the same 
original set of items in it whenever we use it again somewhere in the query.  

Sometimes however we want to restrict the number of items in some concept or new 
collection so that these changes are visible to all internal queries. For example, if we 
know that our analysis deals with only an interval of dates then it is more convenient to 
restrict the set of dates in the very beginning in order to avoid specifying this constraint 
each time when we use dates. Such a mechanism is even more important where we want 



these constraints to be propagated automatically over the model and imposed onto other 
concepts.  

We already used the automatic constraint propagation in the previous section to get all 
categories of one user. Another approach to this problem consists in redefining one of 
existing concepts so that the new definition is visible for all internal query contexts (but 
not from external contexts). Such a redefinition can be done explicitly when we assign a 
new constrained collection to the same existing variable (concept name). For example, if 
we want to deal only with today’s transactions then in the beginning of any query we 
write:  

Dates = {d : Dates | d == today}  

After that the concept Dates will be redefined and consist of less items than the original 
source concept. Moreover, that this constraint will be automatically propagated down to 
all the subconcepts. This means that all the subconcepts will include only items with 
today’s date assigned to them directly or indirectly. In particular, in all internal queries 
we will see only today’s auctions and auction bids.  

There could be other ways to restrict visible items but the general idea is still the same 
and consists in redefining an existing concept rather than using a new concept. For 
example, if in the body of query we define a new collection based on some source 
concept and then do not use it anywhere then this should be interpreted as imposing 
constraints on the source concept. For example, the query  

{Auctions | {d : Dates | d == today} }  

will return all today’s auctions because the internal query is interpreted as a constraint 
for the concept Dates which is propagated down and restricts items from concept 
Auctions.  

In general case concept-oriented query involves the following constituents:  

Prolog. Before query starts executing and after its body we frequently need to perform 
some actions. In prolog we normal want to prepare the source concepts/collections. In 
this section we can create and use intermediate variables that will be visible from internal 
contexts. As usual these variables may have either a type of collection or a type of data 
item.  

Universe of discourse. In this section we specify a set of existing source 
concepts/collections along with their instance variables. For example, we can use 
collections defined in the prolog section or the source collections can be taken from 
the external context (like pre-existing concepts). Their Cartesian product is the 
universe of discourse. Each point of the universe of discourse is referenced by the 
keyword ‘this’ in the query body.  

Query body. This section involves operations in the context of one point from the 
universe of discourse. In other words, all operations from this section assume that 
‘this’ variable as well as all instance variables of the source collections are assigned 
some concrete data items.  

Before. This section is part of the query body and it is executed for each point from 
the universe of discourse. Normally it is needed if we want to prepare some 
intermediate results to be used in the next section.  

If. This section is part of the query body and it is where we evaluate if the 
current point has to be included into the result collection returned from the 
query. If this condition is evaluated to true then the current point will be 
included into the result collection.  

Then. This section is part of the query body and it is executed after the point is 
decided to be included into the result collection (but before it is really included). 
For example, here we might compute some return variables for return section.  

Else. This section is part of the query body and it is executed after the point is 
decided to be not included into the result collection.  

After. This section is executed after the evaluation of the current point and before 
we iterate to the next point from the universe of discourse.  



Return. Here we specify variable to be returned as new dimensions of the result 
collection. These values can be specified as an expression or as an intermediate 
variables from the query body (normally from then section).  

Epilog. In this section we execute operations before the result collection is returned. After 
this section all intermediate variables will be destroyed.  

7. Conclusion  
In the paper we described the concept-oriented data model and how it can be used for 
logical navigation. The whole model and each element can be viewed from two sides: 
physical and logical. From physical point of view each element is a collection of other 
elements. This structure is hierarchical and is used to implement references. From logical 
point of view each element is a combination of other elements in the model. The logical 
organization has a dual interpretation where each element is a logical collection of other 
elements. The logical structure is used to represent the problem domain dependencies. 
In the two-level model considered in the paper the root element physically contains a set 
of concepts which in turn contain their sets of data items. Concepts and items are 
defined as combinations of other concepts and items, respectively. Such a logical 
structure of concepts describes the model syntax while the logical structure of items 
defines the model semantics.  

In order to access data in such a model we described a mechanism of access path and 
derived properties. An access path consists of a sequence of segments where each 
segment is either a dimension or an inverse dimension. Such a mechanism provides very 
easy to use means for navigating in the model using its syntactic structure of 
dimensions. This approach is especially useful if access paths are used to define derived 
properties of concepts which are considered normal dimensions. In general case the 
model provides a mechanism of multidimensional queries with automatic constraint 
propagation.  

Taking into account the described characteristics the concept-oriented model it is a good 
choice for applying in very different domains for modelling a wide range of practical 
situations and use cases. 
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