
Mining Possibilistic Set-Valued Rules
by Generating Prime Disjunctions

Alexandr A. Savinov

GMD — German National Research Center for Information Technology
Schloss Birlinghoven, Sankt-Augustin, D-53754 Germany
E-mail: savinov@gmd.de, http://borneo.gmd.de/~savinov/

Abstract. We describe the problem of mining possibilistic set-valued rules in
large relational tables containing categorical attributes taking a finite number of
values. An example of such a rule might be “IF HOUSEHOLDSIZE={Two
OR Tree} AND OCCUPATION={Professional OR Clerical} THEN
PAYMENT_METHOD={CashCheck (Max=249) OR DebitCard (Max=175)}.
The table semantics is supposed to be represented by a frequency distribution,
which is interpreted with the help of minimum and maximum operations as a
possibility distribution over the corresponding finite multidimensional space.
This distribution is approximated by a number of possibilistic prime
disjunctions, which represent the strongest patterns. We present an original
formal framework generalising the conventional boolean approach on the case
of (i) finite-valued variables and (ii) continuos-valued semantics, and propose a
new algorithm, called Optimist, for the computationally difficult dual
transformation which generates all the strongest prime disjunctions
(possibilistic patterns) given a table of data. The algorithm consists of
generation, absorption and filtration parts. The generated prime disjunctions
can then be used to build rules or for prediction purposes.

1. Introduction

One specific data analysis task consists in discovering hidden patterns that
characterise the problem domain behaviour and then representing them in the form of
rules, which can be used either for description or for prediction purposes. The
analysed database consists of a number of records, each of which is a sequence of
attribute values. In the case where variables in condition and conclusion may take
only one value we obtain well known association rules which describe the
dependencies (associations) among individual values rather than among sets of the
values. If the variables in rules may be constrained by any subset of possible values
then we obtain so called possibilistic set-valued rules, e.g.:

IF },{ 14131 aax = AND },{ 27212 aax = THEN }:,:{ 363633333 papax =
where ija are values of the i-th variable and ijp are degrees of possibility expressed

as maximal frequencies of the corresponding values within the interval. This rule
means that if 1x is either 13a or 14a , and 2x is either 21a or 27a , then 3x is either

Proc. 3rd European Conference on Principles and Practice of Knowledge Discovery
in Databases -- PKDD'99 (LNCS 1704), September 15-18, 1999, Prague, 536-541.

33a or 36a with the possibilities 33p and 36p , respectively, while the rest of the

values such as 31a are impossible within this condition interval (the frequency is 0).
In the paper we consider the problem of mining set-valued rules for the case where

all variables may take only a finite number of values, and the possibilistic semantics is
represented by a frequency distribution (the number of observations belonging to each
point). The problem is that the number of all possible conjunctive intervals of the
multidimensional space is extremely large. However, most of them are not interesting
since the projection of the restricted distribution onto all variables does not have much
information (it is highly homogeneous). Thus, informally, the more general the rule
condition (the wider the selected interval), and the narrower the conclusion are (the
closer the conclusion distribution to the singular form), the more interesting and
informative the rule is. To find such maximally general in condition and specific in
conclusion rules we use an approach [1] according to which any multidimensional
possibility distribution can be formally represented (Fig. 1) by a set of possibilistic
disjunctions combined with the connective AND (possibilistic CNF). The disjunction
(possibilistic pattern) is made up of several one-dimensional possibility distributions
(propositions) over the values of individual variables combined with the connective
OR (interpreted as maximum). Note that we use an original definition of possibilistic
disjunction, which generalises the conventional boolean analogue in two directions:
(i) the variables are finite-valued [2] (instead of only 2-valued), and (ii) the semantics
is continuous-valued [1] (instead of only 0 and 1). Particularly, this feature
distinguishes our approach from other methods including Boolean reasonging and
rough sets. The strongest disjunctions, called primes, are used to form the optimal
and the most interesting rules, i.e., possibilistic prime disjunctions allow us to reach
both goals when generating rules — maximal generality of condition and maximal
specificity of conclusion. In contrast to the previous version [3] requiring all records
to be in memory, the Optimist is based on the explicit formula [4] of transformation
from possibilistic DNF representing data into CNF consisting of prime disjunctions
(knowledge). The advantage is that all prime disjunctions are built for one pass
through the record set by updating the current set of prime disjunctions each time new
record is processed. The algorithm efficiently solves the problem of computational
complexity by filtering out too specific disjunctions interpreted as noise or exceptions
and generating only the most informative of them. Once the patterns have been found
they can be easily written as rules.

Ω

u v
w d

15

25

w is prime but too specific
disjunction (noise) and
therefore it is filtered out

d is not prime disjunction
since it follows from v and
therefore it is absorbed

Frequency distribution is
initially extensionally
represented by a number of
conjunctions, which lower
bound its surface

D(ω)=min(u(ω),v(ω))=min(15,25)=15ω
D A T A

Fig. 1. The data semantics is approximated (upper bound) by prime disjunctions (patterns).

2. Data and Knowledge Representation

Let some problem domain on the syntactic level be described by a finite number of
variables or attributes nxxx ,,, 21 � each of which takes a finite number of values and

corresponds to one column of data table: niaaaAx
iiniiii ,,2,1},,,,{ 21 �� ==∈ ,

where in is the number of values of i-th variable and iA is its set of values. The state

space or the universe of discourse is defined as the Cartesian product of all sets of the
values: nAAA ×××=Ω �21 . The universe of discourse is a finite set with the
multidimensional structure. Each syntactic object (state) from the universe of
discourse is represented by a combination of values of all variables:

Ω∈��= nxxx ,,, 21 �ω . The number of such objects is equal to the power of the

universe of discourse: nnnn ×××=Ω �21 .

Formally the problem domain semantics is represented by a frequency distribution
over the state space which assigns the number of occurrences to each combination of
values. Then 0 is interpreted as the absolute impossibility of the state while all
positive numbers are interpreted as various degrees of possibility. We do not map this
distribution into the interval [0,1] since for rule induction it is simpler to work directly
with frequencies. The semantics will be represented by a special technique called the
method of sectioned vectors and matrixes [1–3]. Each construction of this mechanism
along with interpretation rules imposes constraints of certain form on possible
combinations of attribute values. The sectioned constructions are written in bold font
with the two lower indexes corresponding to the number of variable and to the
number of value, respectively.

The component iju of the sectioned vector u is a natural number assigned to j-th

value of i-th variable. The section iu of the sectioned vector u is an ordered

sequence of in components assigned to i-th variable and representing some

distribution over all values of one variable. The sectioned vector u is an ordered
sequence of n sections for all variables. The total number of components in sectioned
vector is equal to nnnn +++ �21 . The sectioned matrix consists of a number of

sectioned vectors written as its lines. For example, the construction =u 01.567.0090
or =u {0,1}.{5,6,7}.{0,0,9,0} is a sectioned vector written in different ways (with
sections separated by dots) where =1u {0,1}, =2u {5,6,7}, =11u 0 and so on.

There are two interpretations of sectioned vectors: as conjunction and as
disjunction. If the sectioned vector d is interpreted as disjunction then it defines the
distribution, which is equal to the maximum of the vector components corresponding
to the point coordinates:

)(max)()()(),,,()(
,,1

221121 ii
ni

nnn xxxxxxx dddddd
�

��

=
=∨∨∨=��=ω

(The minimum is taken among n components — one from each section.) The
conjunction is interpreted in the dual way by means of the minimum operation.

Sectioned matrixes can be interpreted as DNF or CNF. If the matrix K is
interpreted as DNF then its sectioned vector-lines are combined with the connective
∨ and interpreted as conjunctions (disjunction of conjunctions). In the dual way, if

the matrix D is interpreted as CNF then its sectioned vector-lines are combined with
the connective ∨ and interpreted as disjunctions (conjunction of disjunctions).

The data can be easily represented in the form of DNF so that each conjunction
represents one record along with the number of its occurrence in the data set. The
conjunction corresponding to one record consists of all 0’s except for one component
in each section, which is equal to the number of record occurrences.

One distribution is said to be a consequence of another if its values in all points of
the universe of discourse are greater or equal to the values of the second distribution.
We will say also that the first distribution covers the second one. The operation of
elementary induction consists in increasing one component of a disjunction so that it
becomes weaker. The disjunction is referred to as prime one if it is a consequence of
the source distribution but is not a consequence of any other distribution except of
itself. The prime disjunctions are considered as possibilistic patterns expressing
dependencies among attributes by imposing the strongest constraints on the possible
combinations of values. Thus formally the problem of finding dependencies is
reduced to the problem of generating possibilistic prime disjunctions.

3. Generation, Absorption and Filtration of Disjunctions

To add the conjunction k (record) to the matrix of CNF D (current knowledge) it
is necessary to add it to all m disjunctions of the matrix:

)()()()(2121 mm dkdkdkdddkDk ∨∧∧∨∧∨=∧∧∧∨=∨ ��

Addition of conjunction to disjunction is carried out by the formula:
=∨ dk =∨∧∧∨∧∨)()()(21 dkdkdk n�

=
∨∨∨∨
∨∨∨∨
∨∨∨∨

)(

)(

)(

21

212

211

nn

n

n

dddk

dddk

dddk

�

�

�

nn

n

n

dkdd

ddkd

dddk

∨∨∨∨
∨∨∨∨
∨∨∨∨

�

�

�

21

221

211

In general case n new disjunctions are generated from one source disjunction by
applying the elementary induction, i.e., by increasing one component. For example,
according to this formula addition of the conjunction k = 05.005.0005 to the
disjunction d = 01.070.0102 results in three new disjunctions (increased components
are underlined): 05.070.0102, 01.075.0102, and 01.070.0105.

If the elementary induction does not change one of the disjunctions then it means
that the source disjunction already covers the conjunction. In this case the disjunction
can be simply copied to the new matrix with no modifications. Thus the whole set of
new disjunctions can be divided into two subsets: modified and non-modified.

As new disjunctions are generated and added to the new matrix the absorption
procedure should be carried out to remove the lines which are not prime and follow
from others, e.g., d in Fig. 1. In general, each new disjunction can either be absorbed
itself or absorb other lines. Thus the comparison of lines has to be fulfilled in both
directions. To check for the consequence relation between two disjunctions we have
to reduce them [1] and then compare all their components. Let us formulate
properties, which significantly simplify the absorption process.

Property 1. The disjunctions, which cover the current conjunction and hence are
not modified, cannot be absorbed by any other disjunction.

This property follows from the fact that the matrix of disjunctions is always
maintained in the state where it contains only prime disjunctions, which do not absorb
each other.

Let us suppose that u is non-modified disjunction while v is modified on the
component rsv , and rsv′ is old value of modified component (ijij uu ′= since u is

not modified). Then the following property takes place.
Property 2. If rsrs vu ′≤ then v does not follow from u . (This property is valid

only if the constant [1] of v has not been changed.
To use this property each line has to store information on the old value rsv′ of

modified component and its number (r and s). These properties are valuable since
frequently they allow us to say that one line is not a consequence of another by
comparing only one pair of components.

Property 3. If the sum of components in v or in any of its sections iv is less then

the corresponding sum in the disjunction u then v does not follow from u .
To use this property we have to maintain the sums of the vector and section

components in the corresponding headers. If all these necessary conditions are
satisfied then we have to carry out a component-wise comparison of two vectors in
the loop consisting of nnnn +++ �21 steps.

To cope with complexity problem and to generate only interesting rules the
algorithm has been modified so that the number of lines in the matrix of prime
disjunctions is limited by a special user-defined parameter while the lines are ordered
by a criterion of interestingness. Before a new disjunction is to be generated we
calculate its criterion value (the degree of interestingness) which is compared with
that of the last line of the matrix. If the new disjunction does not go into the matrix
(e.g., w in Fig. 1), it is simply not generated. Otherwise, if it is interesting enough, it
is first generated, then checked for absorption, and finally inserted into the
corresponding position in the matrix (the last line is removed).

The Optimist algorithm uses the criterion of interestingness in the form of the
impossibility interval size. Informally, the more points of the distribution have
smaller values, the more general and stronger the corresponding disjunction is.
Formally the following formula is used to calculate the degree of interestingness:

���
===

+++=
nn

j
nj

n

n

j
j

n

j
j nnn

H
11

2
21

1
1

111 21

ddd �

according to which H is equal to the weighted sum of components, and the less this
value, the stronger the disjunction. For example, changing one component from 0 to
1 in two-valued section is equivalent to changing three components from 0 to 1 in six-
valued section. Generally, each attribute or even each attribute value may have their
own user-defined weights, which influence the direction of induction and reflect their
informative importance or subjective interestingness for the user. This mechanism
provides the capability of more flexible control over the rule induction process.

The set of generated prime disjunctions is an approximate semantic equivalent of
the data. Once they have been generated they can be used for prediction purposes or

to build rules. The patterns are rewritten in the form of rules in the conventional way
by negating the propositions (sections) which should be in the condition and thus
obtaining an implication. The only problem here is that we obtain conditions with
possibilistic weights while it is more preferable to have crisp conditions (without
uncertainty). The most straightforward way to do it consists in negating the condition
section id as follows: maxdd =ij , if mindd ≤ij , and mindd =ij , otherwise, where

mind and maxd are minimal and maximal components of the disjunction, respectively

(maxd is usually mapped into 1 within [0,1] interval). For example, the pattern

=d {0,8} ∨ {0,6,0} ∨ {0,2,9,5} with 0min =d and 9max =d can be transformed into

the implication {9,0} ∧ {9,0,9} → {0,2,9,5} which is interpreted as the possibilistic
rule IF }{ 111 ax = AND },{ 23212 aax = THEN }5:,9:,2:,0:{ 343332313 aaaax =
This method can be generalised by applying any user-defined value instead of mind .
In addition, the values in conclusion can be easily weighted by their frequencies (the
sum of occurrences within the condition interval) or necessity degrees (the minimal
number of occurrences), e.g., }:),4()2()0(:{ 33323 �aSumMaxMinax ==== .

4. Conclusion

The described approach to mining possibilistic set-valued rules has the following
characteristic features: (i) it is based on the original formal framework generalising
boolean approach on the case of finite-valued attributes and continuous-valued
semantics, (ii) the notion of prime disjunction as a pattern allows us to reach
optimality of rules (maximal generality of condition and specificity of conclusion),
(iii) it guarantees finding only the strongest patterns (too weak ones are filtered out),
(iv) all attributes as well as all rules have equal rights, particularly, we do not need the
target attribute and all rules are interpreted independently, (v) the rules are generated
for one pass, (vi) the patterns can be easily used for prediction as well as for other
tasks since they approximately represent the data semantics in an intensional form,
(vii) a minus is a large number of generated rules especially for dense distributions
what can be overcome by a more sophisticated filtration and search.

References

1. A.A. Savinov. Fuzzy Multi-dimensional Analysis and Resolution Operation. Computer Sci.
J. of Moldova 6(3), 252–285, 1998.

2. A.D. Zakrevsky, Yu.N. Pechersky and F.V. Frolov. DIES — Expert System for Diagnosis
of Technical Objects. Preprint of the Institute of Mathematics and CC, Academy of Sciences
of Moldova, Kishinev, 1988 (in Russian).

3. A. Savinov. Application of multi-dimensional fuzzy analysis to decision making. In:
Advances in Soft Computing — Engineering Design and Manufacturing. R. Roy,
T. Furuhashi and P.K. Chawdhry (eds.), Springer-Verlag London, 1999.

4. A. Savinov. Forming Knowledge by Examples in Fuzzy Finite Predicates. Proc. conf.
“Hybrid Intellectual Systems”, Rostov-na-Donu—Terskol, 177–179, 1991 (in Russian).

