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ABSTRACT 
In the paper a new data mining algorithm for finding the most 
interesting dependence rules is described. Dependence rules are 
derived from the itemsets with support significantly different from 
its expected value and therefore considered interesting. Since such 
itemsets are distributed non-monotonically in the lattice of all 
itemsets the support monotonicity property cannot be used for 
their search. Instead we estimate upper/lower bounds for the 
support to find itemsets with large interval of possible support 
values called support quota. Since the support quota is known to 
be monotonically decreasing the search space can be effectively 
restricted. Strongly dependent itemsets are selected by computing 
their expected support using iterative proportional fitting 
algorithm and comparing it with the real itemset support.  
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1. INTRODUCTION  
Rules are semantic constructions having the form IF X THEN Y 
where X restricts objects by means of some logical condition 
while Y is some (interesting) semantic statement about these 
objects. For example, a rule might say that “IF SEX is Male AND 
AGE is Young AND ACTIVITY is Low THEN 
PAYMENT_METHOD is Cash (55%), DebitCard (15%), 
CreditCard (10%) or OtherMethods (20%)”. This rule predicts 
probability of payment method for the selected subgroup of 
customers. There exists a huge number of syntactically valid 
antecedents and for each of them we can generate the 
corresponding consequent from the dataset as probabilities of the 
target values under the specified constraints. So the crucial 
question is whether a rule is interesting or not (see, e.g., [1]). In 
particular, what is interesting in the above rule? Is it interesting 
that payment in cash is relatively high (high confidence [2]) or 
payment with credit card is lower (hole in data [3,4,5])? There 
exists no one ultimate answer for this question and different rule 
induction methods provide their own rule interestingness 
measures and their interpretations. 

In association rule mining interestingness is based on two 
parameters: support and confidence. Support characterizes rule 
generality and is equal to the percentage of objects covered by the 
corresponding itemset. Confidence characterizes the rule 
surpriseness and is equal to the percentage of objects satisfying 
consequent among those satisfying the antecedent. Here very high 
values of confidence are assumed to be surprising or unexpected. 
The main problem of such a support-confidence framework is that 
rule confidence does not reflect correctly what is meant by 
surpriseness or unusualness because this parameter relates to the 
only rule and does not take into account other available rules. For 
example, a rule might say that the probability to buy beer is 99% 
if chips have been bought and it is regarded as an extremely 
surprising fact and hence very interesting association rule. 
However it may well happen that the default (unconditioned) 
probability of buying beer is 95% so taking this into account the 
above rule produces almost no surprise and thus is regarded as 
non-interesting. Thus confidence can be considered as a factor of 
surprise only in rare situations where the itemset does not inherit 
information from its subsets while in general case we need to 
provide more comprehensive framework, which could take into 
account more complex dependencies.  
The corresponding critique of the conventional association rule 
mining framework has been presented in [6,7] where the notion of 
dependence rule has been proposed to overcome its shortcomings. 
In particular, in order to reveal highly dependent itemsets 
characterized by their own high interestingness rather than 
inheriting it from its subsets the chi-square test for independence 
has been applied. This parameter has been proven to be 
monotonically decreasing with the itemset size. This allows for 
organizing an efficient search for highly dependent itemsets and 
hence dependence rules derived from them.  
A continuation of this line is presented in [8] in the form of the 
theory of dependence values where a new model to evaluate 
dependencies is proposed. The idea consists in computing for 
each itemset its expected support and then comparing it with the 
real one. Large difference means high surprise and hence 
interestingness. The crucial moment in comparing expectations 
with reality is how expected value is calculated. In this model it is 
calculated by using maximum independence estimate with the 
help of the iterative proportional fitting algorithm.   

This approach however does not provide a search method, which 
could efficiently find itemsets characterized by high dependence 
so it can be used as an additional evaluation technique (like 
confidence) applied after the frequent itemset search. The main 
problem here is that highly dependent itemsets are distributed 
non-monotonically so essentially they can be found anywhere in 
the lattice. In other words, if we know dependence value for an 
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itemset then it says absolutely nothing about the possibility to 
have dependencies in its supersets. In this paper we present one 
solution to this problem by describing an algorithm, called Quota, 
which is able to directly search for dependent itemsets even if no 
other criteria are provided. Thus instead of generating a huge 
number of all frequent itemsets and then evaluating their 
dependence value this algorithm effectively predicts directions 
where dependent itemsets can reside and cuts off all branches, 
which are guaranteed to have no dependent itemsets.  
The idea of the Quota algorithm is that each itemset is 
characterized by real support determined from data and expected 
support derived from its subsets. These values are restricted by 
lower and upper bounds, which are also computed from all the 
subsets. The size of this interval of possible support values 
allocated for each itemset is said to be support quota. The 
dependence value is defined as difference between real and 
expected support and hence its absolute value is always less than 
or equal to support quota. In other words, if support quota is too 
small then the itemset cannot have high dependence value. For 
example, if an itemset is known to take its support between 2% 
and 5% then its dependence must be less than the support quota 
3%. Support quota can be derived from known supports of subsets 
using different support bounding techniques, e.g., described in 
[9]. For the algorithm it is important that support quota is known 
to monotonically decrease with the rank, e.g., for a 4-itemset it is 
less than for any its parent 3-itemset. Thus if an itemset support 
quota has been found too small then all its supersets are known in 
advance to have it even smaller and hence no dependent itemsets 
can be found in this branch. Thus the kernel of the algorithm finds 
itemsets with high support quota because only such itemsets can 
be dependent. Informally, support quota for dependence value is 
like support for confidence in the conventional association rule 
mining. We search for high support quota itemsets just like we do 
it for frequent itemsets and then select among them those with 
large difference between real and expected supports.  
Normally only a small portion of high support quota itemsets are 
really dependent. To find them we compare their real support with 
the expected one. In addition other secondary measures of 
interestingness can be applied. Finally the dependence rules are 
built by inverting some items. The generated dependence rules are 
guaranteed to be highly informative in the sense that their 
information is not contained in and cannot be derived from other 
rules. Such rules may have any confidence for the target items 
starting from 0 and ending with 100% — the main thing is that 
this probability is significantly different from what is expected. 
For example, a rule might say that the probability to buy beer 
under some conditions is 50% and it is extremely surprising since 
from all other rules 95% is expected.  
The expected value can be calculated from very different 
principles but the most fundamental one supposes that complete 
independence of items means maximum entropy of the 
corresponding distribution. Unfortunately currently there is no 
closed formula for calculating such an expected probability and 
we use iterative proportional fitting algorithm [10], which can 
find this estimate at any desired level of accuracy. It is worth 
noticing that similar ideas are used by log-linear methods in 
statistics where the degree of dependence associated with a set of 
variables is called an interaction term. Yet in statistics the main 
task is how to calculate such interaction terms for a set of 
(normally 2 or 3) variables while in data mining the main problem 
is how to efficiently organise the search.  

2. DEPENDENT ITEMSETS  
Dependence rules are derived from itemsets characterized by 
strong dependence value by choosing some target item so the task 
of dependence rule mining can be reduced to finding such 
dependent itemsets. Informally dependence value associated with 
each itemset represents new information belonging to this and 
only this combination of items. Having such coefficients for all 
itemsets means complete representation of the dataset semantics, 
i.e., we can precisely reproduce the underlying probability 
distribution or each itemset support. If we have these coefficients 
only for a subset of all itemsets then some information is lost. 
Thus in order to select only informative itemsets we need to 
define their degree of dependence in such a way that it reflects 
exclusively own information of an itemset that cannot be derived 
(expected) from its subsets. The goal of data mining in this 
context can be defined as simplifying representation of data 
semantics by finding a small number of patterns representing most 
of information in the dataset. For example, we might find 1% of 
itemsets explaining 99% of dependencies in a dataset. The use of 
dependence values (rather than other measures of itnerestingness) 
allows us to avoid itemsets with semantics (support) derived from 
its subsets. Thus the rules produced from such dependent itemsets 
are highly informative because their prediction cannot be derived 
and hence is highly unexpected.  
The main problem here is how to measure itemset’s own 
information, i.e., how to separate information that can be derived 
from subsets and select only what is absolutely unique in it. For 
two variables the answer is well known and consists in calculating 
their correlation (normalized covariance), which effectively 
removes influence of individual items from the pair. Obviously 
correlation is much better solution than association rules for 
measuring dependence between buying chips and beer because 
now it does not depend on probabilities of individual items. 
Unfortunately there is no such a simple measure for an arbitrary 
set of items characterizing their own (mutual) correlation. In 
statistics there exist a number of methods that are considered good 
for various particular cases. One such method is chi-squared test 
for independence used in [6,7] to generate dependence rules. This 
measure of dependence is upward close, i.e., if A and B are 
dependent then ABC is also dependent. This is not quite natural if 
we define dependence as itemset’s own characteristic. In other 
words, if A and B are dependent (or independent) then it should 
say nothing about ABC or A, which may have their own 
dependence value.  
Instead of directly computing degree of dependence like 
correlation we can use an approach consisting in comparing its 
expected and real support where expected support is the value 
derived from all subsets of this itemset. Here the center of the 
problem is shifted to computing expected value. The most 
justified approach consists in calculating it from the maximum 
entropy principle. The idea here is that expected support must 
maximize entropy of the underlying distribution if supports of all 
subsets are fixed. In other words, expected support is the only 
unknown parameter, which can be varied and each its value 
allows us to reconstruct the probability distribution. We choose 
among them the distribution with maximum entropy and declare 
the corresponding support as an expected value because it does 
not add any new information to the distribution and hence the 
items are completely (mutually) independent. Yet if the real value 
differs from what is expected then the itemset is said to have some 
dependence among its items (but not in their subsets).  
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Figure 1. Lattice of itemsets.  

 
This idea has been applied to evaluate itemset dependence in [8], 
It has been also described how this measure of dependence can be 
used to prune redundant association rules [11]. However currently 
there is no method to directly search for such dependent itemsets 
so that this method turns into a filtering or postprocessing 
technique. The main problem is that dependent itemsets are 
distributed non-monotonically in the lattice (Fig. 1). In particular, 
it is quite possible that there are no dependent itemsets up to the 
level 5 and only itemsets consisting of 6 items possess some 
information. In the next sections we describe an algorithm, which 
makes it possible to efficiently search for such nuggets of 
dependence in huge lattice of itemsets based on predicting an 
interval of possible support values called support quota.  

3. FINDING HIGH SUPPORT QUOTA 
ITEMSETS  
Data semantics is represented as a probability distribution 

 over the hypercube where each vertex 
 corresponds to one database transaction, i.e., one 

combination of items or one record. Here variables  
take values 0 or 1, where 1 means that the corresponding item is 
present and 0 means its absence. The number of variables taking 
value 1 is the transaction size, rank or level. For example, the 
vertex with all zeros corresponds to the empty transaction with no 
items and  is its probability.  is 
probability of the transaction consisting of item  and so on. 
Notice that  is probability of this and only this 
transaction rather than the itemset support. The probability 
distribution  is supposed to encode the complete 
data semantics and theoretically once we have it, further we can 
calculate any its parameters. The problem however is that in 
practice the hyper cube is extremely large and it is not possible to 
represent the semantics explicitly in each point. This is why we 
use itemset support defined as a coefficient  calculated for 
each combination of variables as follows:  
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In particular, support of the empty itemset is the sum of 
probabilities over the whole hypercube and is equal 1 while 
support of the full itemset is equal to its own probability.  
Below we show how lower  and upper  bounds for 
the itemset support can be found based on available information 
about supports of all its subsets. Why itemset support has to be 

bounded and why it cannot take any value? Assume that we know 
supports of all subsets of an itemset. If now we learn the support 
of the itemset itself then we can completely reconstruct the 
corresponding probability distribution. Depending on the itemset 
support chosen we will obtain different probability distributions. 
The main idea underlying the support bounding mechanism is that 
since the values of the probability distribution are bounded by 0 
and 1 the itemset support we vary as a parameter is also bounded 
by some values. In other words, if the itemset support is too low 
or too high then the uniquely reconstructed probability 
distribution may well turn out to be less than 0 or greater than 1 in 
some points. Formally it is expressed as follows:  
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Taking this into account the next task is to reconstruct 2  values 
of probability distribution from its known 
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, i.e., support is always 
within the interval [0,1]. If only one variable takes value 0 then 
the reconstruction is also simple and we derive that 

 from which  additional bounds 
can be derived: . It means that support 
of an itemset is less than or equal to that of any its direct subset. 
Obviously, it is precisely the main optimisation used in all 
association rule mining (support counting) algorithms [2].  
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In general case the idea of reconstructing the probability 
distribution given its supports consists in finding cross-sum 
between two points in the lattice:  
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Thus for each candidate itemset for which we are estimating 
support bounds we need to calculate the cross-sum (3) between 
each its subset and the candidate itemset . Each such cross-
sum is used to calculate new bounds according to (2).  
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For example, in Fig. 2 we have one candidate itemset of rank 3 
with unknown support . We need to find its support quota in 
order to predict (without explicit frequency counting through the 
dataset) if it can be dependent or not. First, we reconstruct 3 
dimensional probability distribution by finding cross-sum of 
supports between each of 7 subsets and the candidate itemset. For 
example, for itemset  the cross sum is =)0,1,0(p
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value must be between 0 and  we derive using (2) two 
bounds: . From this constraint we see that the 
candidate itemset is guaranteed to have support greater than 3. To 
get the most precise tight bounds we need to repeat this procedure 
for all subsets. In particular, for the empty set we obtain 
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we get that the interval of possible support values is [3,5] with the 
support quota 
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Figure 2. Support bounding.  

 
The support quota (2 in our example) allows us to determine in 
advance if this itemset can be interesting or not because support 
quota restricts dependence value :  nd K12
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Here we assume that expected support is always within the 
interval of possible values what is quite natural but must be 
guaranteed by the corresponding algorithm. For example, for 
linear models this condition is not satisfied while for log-linear 
models it is so.  
For our algorithm the most important property of support quota is 
that it may only decrease with the itemset size. A formal proof of 
this fact can be found in [9]. Thus if we found support quota for a 
candidate itemset we can predict not only its own dependence 
value but also that for all its supersets. For example in Fig. 2 it 
means that no one superset of the candidate 3-itemset can have 
quota and dependence greater than 2. Notice here that absolute 
values of support do not play any role and it is the difference 
between maximum and minimum possible support that determines 
if we continue the search in this direction or stop. Intuitively it is 
clear that support quota drops 2 times faster with the rank, i.e., 
quota of a direct superset is at least 2 times less than that for its 
parent. However with no proof we regard it as a hypothesis.  

4. MINING DEPENDENCE RULES  
The computational kernel of the Quota algorithm implemented in 
C++ in Windows is aimed at finding itemsets with high support 
quota and cutting off all itemsets with the support quota less than 
the specified threshold specified in % as a minimum (absolute) 
dependence (minDep parameter). For example, minimum 
dependence 1% means that the quota of each itemset must be at 
least 1% of the dataset size. From computational point of view the 
primary distinction of the algorithm is that we use support quota 
as the main restricting parameter instead of an absolute value of 
support. Yet the minimum support threshold can be specified as a 
secondary parameter, e.g., to guarantee statistical significance. 
Notice however that minimum quota effectively restricts itemset 
support so that minimum support has to be specified only if it is 
greater than quota.  
The algorithm carries out the conventional level-wise search and 
its main loop consists of three methods: generate new set of 
candidates by estimating which of them might be interesting, 
count frequencies of all existing candidate itemsets from the 
dataset, prune candidates on the basis of their real parameters. 
Notice that the quota mining kernel does not need to know 
expected support of generated itemsets. So essentially we do not 
need to know if generated itemsets are interesting or not (just like 
in association rule mining we do not need to know which itemsets 

produce high confidence rules). However, it is convenient to find 
expected support and thus dependent itemsets during the search, 
e.g., to restrict the maximum number of interesting itemsets. 
Frequency counting and pruning have been implemented in the 
conventional way. For finding real frequencies we increment each 
itemset covered by one transaction while pruning is reduced to 
removing low support itemsets.  
The original part of the Quota algorithm is the candidate 
generation procedure. For each existing itemset it tries to build all 
its supersets by adding one item (with the number greater than 
any existing in the itemset). For each new syntactically correct 
candidate this procedure calculates its lower/upper support 
bounds. Depending on these bounds the algorithm decides if the 
itemset has to be built and included into the lattice. In our case 
only itemsets with high enough support quota and upper bound 
are built. Notice that even for mining frequent itemsets such an 
approach is more efficient because we find tight upper bound, 
which allows the algorithm to prune some branches earlier. For 
example, 3-itemset in Fig. 2 will be rejected by our algorithm and 
accepted by Apriori in the case of minimum support 5.5.  
Candidate itemset lower/upper bounds estimation is the most 
difficult procedure since it requires passing through all the subsets 
and for each of them calculating cross-sum between this and the 
candidate itemset. Yet this is compensated by early detection of 
dead branches and the overhead is extremely low for large 
dataset.  
To select interesting itemsets the algorithm needs to calculate 
each itemset expected support. Expected frequency is calculated 
from maximum entropy principle, i.e., the distribution 

 reconstructed from all subset supports and 
unknown ~  must have maximum entropy. (One criterion is 
that its cross-product is 1.) Since there is no closed formula for 
computing such an expected value for ranks 3 and higher we 
apply iterative proportional fitting algorithm [10], which 
sequentially approximates the distribution in all its points 
decreasing the error on each step until the desired precision is 
reached. There is a lot of versions of this algorithm with various 
optimisations, however, we implemented our own simple variant. 
After each pass over all itemsets in the sublattice it checks the 
stop condition. In our algorithm we stop the process if the 
difference between new (proportionally adjusted) and previous 
support is lower than some threshold. If the obtained expected 
value is outside the interval of possible supports then we continue 
iterations with higher precision and if after that it is still outside 
the interval then we simply set it to the closest interval limit.  
Once expected supports have been calculated we can select 
itemsets with dependence value higher than the minimum 
dependence threshold. This set of interesting itemsets can be used 
to generate various descriptive or predictive models including 
dependence rules. To further restrict the result we can apply 
additional parameters like maximal rank, coverage (antecedent 
support), target variable, confidence, lift (the relation of the target 
conditional probability to the default probability), leverage 
(covariance between antecedent and consequent).  
 

Table 1. Parameters of datasets used in the experiments.  
Dataset Attributes Nominal Binary Items  Records  

A 497 0 497 497 59602 
B 37 18 19 164 216688 
C 15 7 8 58 31748 
D 9 9 0 32 12960 



 
Table 2. Mean support quota in % for each level (columns) 

and dataset (rows). Minimum dependence is 0.1%.  
Dataset 2 3 4 5 6 7 

A 0.35 0.14 0.12 0
B 5.67 0.72 0.27 ?
C 6.60 1.49 0.49 0.24 0.16 0 
D 24.49 6.76 1.97 0.59 0.18 0.12 

 
Table 3. The number of dependent itemsets for each level 

(columns) and dataset (rows). Minimum dependence is 0.1%.  
Dataset 2 3 4 5 6 7 

A 1076 368 42 0
B 5934 8021 105410 ?
C 482 527 611 168 0
D 122 258 279 14059 11972 0

 
Table 4. The total number of dependent itemsets for different 
minimum dependence threshold (columns) and dataset (rows).  

Dataset 0.1% 0.2% 0.4% 0.6% 0.8% 1% 
A 1983 735 553 520 511 503
B 18084 3491 2122 1616 1232
C 1846 795 421 298 241 210
D 26720 2677 211 163 139 111

 
Table 5. The number of generated candidate itemsets for each 

level (columns) and dataset (rows) with the specified 
minimum dependence threshold. First line in each row — 

with support bounding, second line — no optimisations 
(Apriori).  

Dataset 2 3 4 5 6 7 8 
A 0.05% 
no optim 

69751
69751

158529
159211

8035
688836

5
?

0

B 1%  
no optim 

11325
11325

69304
75939

42493
152573

5036
249988

7
278701

0
?

C 0.1%  
no optim 

861
861

3067
3504

4346
7415

1392
6663

46
3117

0
663 43

D 0.05% 
no optim 

465
465

3091
3135

13854
14354

38869
41699

61833
72603

1154
5323

0
0

 
We applied the Quota algorithm to 4 real world data sets with 
characteristics specified in Tables 1-4. To check how efficient this 
algorithm is in comparison to the case where support bounding is 
not used we count the number of generated candidate itemsets on 
each level because it is the primary factor of performance. The 
results are shown in Table 5 for some fixed minimum dependence 
thresholds. We see that for different datasets we get different 
performance gains. For datasets A and B the gain is dramatic 
because the conventional generate-and-test approach simply 
results in exponential explosion (question mark in tables), e.g., 
688836 candidate 4-itemsets against 8035 by our algorithm for 
dataset A. For datasets C and D the gain is moderate. This is 
because the efficiency of the described approach depends on how 
many strong dependencies exists in a dataset. In particular, if a 
dataset has no dependencies then this algorithm will provide no 
advantage at all because all support bounds will always be equal 
to their widest (default) values. On the other hand existing 
dependencies narrow down these bounds for all their supersets 
and the stronger the dependencies the smaller support quota 
allocated for the supersets. Thus the only thing this algorithm 
does is that it can efficiently and precisely use information 
provided by itemset support to restrict support of its supersets. For 
example, if a dataset has dependencies only of rank 8 then this 
algorithm provides no advantage and generates as many 
candidates as the conventional Apriori-like algorithm and only 

when this level is reached its information can be used to predict 
where dependencies can reside on the next level.  
Dependence rules are generated from highly dependent itemsets 
by calculating the target real and expected confidence, which are 
guaranteed to be significantly different as well as other 
parameters like coverage, lift and leverage.  

5. CONCLUSION  
In the paper a new original algorithm for generating dependence 
rules has been described. This algorithm effectively searches for 
only high support quota itemsets using the monotonicity of this 
parameter. After that it finds the real dependence value of each 
itemset by comparing its real support with the expected support 
computed by iterative proportional fitting procedure. It allows us 
to find dependent itemsets distributed non-monotonically in the 
lattice. This idea is useful not only for rule induction but can be 
applied to other areas and other tasks, which will be considered in 
future work.  
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