
Proc. ACM Symposium on Applied Computing (SAC 2004),
March 14-17, 2004, Nicosia, Cyprus, 525-529: http://portal.acm.org/citation.cfm?id=968011

Mining Dependence Rules
by Finding Largest Itemset Support Quota

Alexandr Savinov
Fraunhofer Institute for Autonomous Intelligent Systems

Schloss Birlinghoven, Sankt-Augustin
D-53754 Germany

savinov@ais.fraunhofer.de

ABSTRACT
In the paper a new data mining algorithm for finding the most
interesting dependence rules is described. Dependence rules are
derived from the itemsets with support significantly different from
its expected value and therefore considered interesting. Since such
itemsets are distributed non-monotonically in the lattice of all
itemsets the support monotonicity property cannot be used for
their search. Instead we estimate upper/lower bounds for the
support to find itemsets with large interval of possible support
values called support quota. Since the support quota is known to
be monotonically decreasing the search space can be effectively
restricted. Strongly dependent itemsets are selected by computing
their expected support using iterative proportional fitting
algorithm and comparing it with the real itemset support.

Keywords
Data Mining, Dependence Rules, Support Bounding, Support
Quota, Expected Support

1. INTRODUCTION
Rules are semantic constructions having the form IF X THEN Y
where X restricts objects by means of some logical condition
while Y is some (interesting) semantic statement about these
objects. For example, a rule might say that “IF SEX is Male AND
AGE is Young AND ACTIVITY is Low THEN
PAYMENT_METHOD is Cash (55%), DebitCard (15%),
CreditCard (10%) or OtherMethods (20%)”. This rule predicts
probability of payment method for the selected subgroup of
customers. There exists a huge number of syntactically valid
antecedents and for each of them we can generate the
corresponding consequent from the dataset as probabilities of the
target values under the specified constraints. So the crucial
question is whether a rule is interesting or not (see, e.g., [1]). In
particular, what is interesting in the above rule? Is it interesting
that payment in cash is relatively high (high confidence [2]) or
payment with credit card is lower (hole in data [3,4,5])? There
exists no one ultimate answer for this question and different rule
induction methods provide their own rule interestingness
measures and their interpretations.

In association rule mining interestingness is based on two
parameters: support and confidence. Support characterizes rule
generality and is equal to the percentage of objects covered by the
corresponding itemset. Confidence characterizes the rule
surpriseness and is equal to the percentage of objects satisfying
consequent among those satisfying the antecedent. Here very high
values of confidence are assumed to be surprising or unexpected.
The main problem of such a support-confidence framework is that
rule confidence does not reflect correctly what is meant by
surpriseness or unusualness because this parameter relates to the
only rule and does not take into account other available rules. For
example, a rule might say that the probability to buy beer is 99%
if chips have been bought and it is regarded as an extremely
surprising fact and hence very interesting association rule.
However it may well happen that the default (unconditioned)
probability of buying beer is 95% so taking this into account the
above rule produces almost no surprise and thus is regarded as
non-interesting. Thus confidence can be considered as a factor of
surprise only in rare situations where the itemset does not inherit
information from its subsets while in general case we need to
provide more comprehensive framework, which could take into
account more complex dependencies.
The corresponding critique of the conventional association rule
mining framework has been presented in [6,7] where the notion of
dependence rule has been proposed to overcome its shortcomings.
In particular, in order to reveal highly dependent itemsets
characterized by their own high interestingness rather than
inheriting it from its subsets the chi-square test for independence
has been applied. This parameter has been proven to be
monotonically decreasing with the itemset size. This allows for
organizing an efficient search for highly dependent itemsets and
hence dependence rules derived from them.
A continuation of this line is presented in [8] in the form of the
theory of dependence values where a new model to evaluate
dependencies is proposed. The idea consists in computing for
each itemset its expected support and then comparing it with the
real one. Large difference means high surprise and hence
interestingness. The crucial moment in comparing expectations
with reality is how expected value is calculated. In this model it is
calculated by using maximum independence estimate with the
help of the iterative proportional fitting algorithm.

This approach however does not provide a search method, which
could efficiently find itemsets characterized by high dependence
so it can be used as an additional evaluation technique (like
confidence) applied after the frequent itemset search. The main
problem here is that highly dependent itemsets are distributed
non-monotonically so essentially they can be found anywhere in
the lattice. In other words, if we know dependence value for an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-812-1/03/04...$5.00.

http://portal.acm.org/citation.cfm?id=968011

itemset then it says absolutely nothing about the possibility to
have dependencies in its supersets. In this paper we present one
solution to this problem by describing an algorithm, called Quota,
which is able to directly search for dependent itemsets even if no
other criteria are provided. Thus instead of generating a huge
number of all frequent itemsets and then evaluating their
dependence value this algorithm effectively predicts directions
where dependent itemsets can reside and cuts off all branches,
which are guaranteed to have no dependent itemsets.
The idea of the Quota algorithm is that each itemset is
characterized by real support determined from data and expected
support derived from its subsets. These values are restricted by
lower and upper bounds, which are also computed from all the
subsets. The size of this interval of possible support values
allocated for each itemset is said to be support quota. The
dependence value is defined as difference between real and
expected support and hence its absolute value is always less than
or equal to support quota. In other words, if support quota is too
small then the itemset cannot have high dependence value. For
example, if an itemset is known to take its support between 2%
and 5% then its dependence must be less than the support quota
3%. Support quota can be derived from known supports of subsets
using different support bounding techniques, e.g., described in
[9]. For the algorithm it is important that support quota is known
to monotonically decrease with the rank, e.g., for a 4-itemset it is
less than for any its parent 3-itemset. Thus if an itemset support
quota has been found too small then all its supersets are known in
advance to have it even smaller and hence no dependent itemsets
can be found in this branch. Thus the kernel of the algorithm finds
itemsets with high support quota because only such itemsets can
be dependent. Informally, support quota for dependence value is
like support for confidence in the conventional association rule
mining. We search for high support quota itemsets just like we do
it for frequent itemsets and then select among them those with
large difference between real and expected supports.
Normally only a small portion of high support quota itemsets are
really dependent. To find them we compare their real support with
the expected one. In addition other secondary measures of
interestingness can be applied. Finally the dependence rules are
built by inverting some items. The generated dependence rules are
guaranteed to be highly informative in the sense that their
information is not contained in and cannot be derived from other
rules. Such rules may have any confidence for the target items
starting from 0 and ending with 100% — the main thing is that
this probability is significantly different from what is expected.
For example, a rule might say that the probability to buy beer
under some conditions is 50% and it is extremely surprising since
from all other rules 95% is expected.
The expected value can be calculated from very different
principles but the most fundamental one supposes that complete
independence of items means maximum entropy of the
corresponding distribution. Unfortunately currently there is no
closed formula for calculating such an expected probability and
we use iterative proportional fitting algorithm [10], which can
find this estimate at any desired level of accuracy. It is worth
noticing that similar ideas are used by log-linear methods in
statistics where the degree of dependence associated with a set of
variables is called an interaction term. Yet in statistics the main
task is how to calculate such interaction terms for a set of
(normally 2 or 3) variables while in data mining the main problem
is how to efficiently organise the search.

2. DEPENDENT ITEMSETS
Dependence rules are derived from itemsets characterized by
strong dependence value by choosing some target item so the task
of dependence rule mining can be reduced to finding such
dependent itemsets. Informally dependence value associated with
each itemset represents new information belonging to this and
only this combination of items. Having such coefficients for all
itemsets means complete representation of the dataset semantics,
i.e., we can precisely reproduce the underlying probability
distribution or each itemset support. If we have these coefficients
only for a subset of all itemsets then some information is lost.
Thus in order to select only informative itemsets we need to
define their degree of dependence in such a way that it reflects
exclusively own information of an itemset that cannot be derived
(expected) from its subsets. The goal of data mining in this
context can be defined as simplifying representation of data
semantics by finding a small number of patterns representing most
of information in the dataset. For example, we might find 1% of
itemsets explaining 99% of dependencies in a dataset. The use of
dependence values (rather than other measures of itnerestingness)
allows us to avoid itemsets with semantics (support) derived from
its subsets. Thus the rules produced from such dependent itemsets
are highly informative because their prediction cannot be derived
and hence is highly unexpected.
The main problem here is how to measure itemset’s own
information, i.e., how to separate information that can be derived
from subsets and select only what is absolutely unique in it. For
two variables the answer is well known and consists in calculating
their correlation (normalized covariance), which effectively
removes influence of individual items from the pair. Obviously
correlation is much better solution than association rules for
measuring dependence between buying chips and beer because
now it does not depend on probabilities of individual items.
Unfortunately there is no such a simple measure for an arbitrary
set of items characterizing their own (mutual) correlation. In
statistics there exist a number of methods that are considered good
for various particular cases. One such method is chi-squared test
for independence used in [6,7] to generate dependence rules. This
measure of dependence is upward close, i.e., if A and B are
dependent then ABC is also dependent. This is not quite natural if
we define dependence as itemset’s own characteristic. In other
words, if A and B are dependent (or independent) then it should
say nothing about ABC or A, which may have their own
dependence value.
Instead of directly computing degree of dependence like
correlation we can use an approach consisting in comparing its
expected and real support where expected support is the value
derived from all subsets of this itemset. Here the center of the
problem is shifted to computing expected value. The most
justified approach consists in calculating it from the maximum
entropy principle. The idea here is that expected support must
maximize entropy of the underlying distribution if supports of all
subsets are fixed. In other words, expected support is the only
unknown parameter, which can be varied and each its value
allows us to reconstruct the probability distribution. We choose
among them the distribution with maximum entropy and declare
the corresponding support as an expected value because it does
not add any new information to the distribution and hence the
items are completely (mutually) independent. Yet if the real value
differs from what is expected then the itemset is said to have some
dependence among its items (but not in their subsets).

1

2

0

n
a set of all transactions/records

Border between itemsets with
large quota and small quota

maximal large quota itemset —
any its superset has small quota
and hence cannot be dependent

Dependent itemsets are
distributed non-monotonically but
only among large quota itemsets

upper bound by all subsets (tight)

lower bound by all subsets (tight)

upper bound by direct parents

real support
expected support d123

q123

dependence

quota empty itemset

full itemset

Figure 1. Lattice of itemsets.

This idea has been applied to evaluate itemset dependence in [8],
It has been also described how this measure of dependence can be
used to prune redundant association rules [11]. However currently
there is no method to directly search for such dependent itemsets
so that this method turns into a filtering or postprocessing
technique. The main problem is that dependent itemsets are
distributed non-monotonically in the lattice (Fig. 1). In particular,
it is quite possible that there are no dependent itemsets up to the
level 5 and only itemsets consisting of 6 items possess some
information. In the next sections we describe an algorithm, which
makes it possible to efficiently search for such nuggets of
dependence in huge lattice of itemsets based on predicting an
interval of possible support values called support quota.

3. FINDING HIGH SUPPORT QUOTA
ITEMSETS
Data semantics is represented as a probability distribution

 over the hypercube where each vertex
 corresponds to one database transaction, i.e., one

combination of items or one record. Here variables
take values 0 or 1, where 1 means that the corresponding item is
present and 0 means its absence. The number of variables taking
value 1 is the transaction size, rank or level. For example, the
vertex with all zeros corresponds to the empty transaction with no
items and is its probability. is
probability of the transaction consisting of item and so on.
Notice that is probability of this and only this
transaction rather than the itemset support. The probability
distribution is supposed to encode the complete
data semantics and theoretically once we have it, further we can
calculate any its parameters. The problem however is that in
practice the hyper cube is extremely large and it is not possible to
represent the semantics explicitly in each point. This is why we
use itemset support defined as a coefficient calculated for
each combination of variables as follows:

),,,(21 nxxxp K

〉〈 nxxx ,,, 21 K

nxxx ,,, 21 K

)0,,0,0(Kp)0,,0,1(Kp
1x

),,2 nxx K

),,, 21 nxx K

p K12

∑=),,212 nk xxxpxxxp KKK }1,0{∈ix

np K
(

12 p̂

nnnn pppxxxp KKK
(

K 12121221 ˆ 1),,,(0 ≤≤⇒≤≤

n

),,,(21 nxxxp K

npp KK 12)1,,1,1(=

10 12 ≤

,(1xp

(xp

k

,(121 k , (1)

In particular, support of the empty itemset is the sum of
probabilities over the whole hypercube and is equal 1 while
support of the full itemset is equal to its own probability.
Below we show how lower and upper bounds for
the itemset support can be found based on available information
about supports of all its subsets. Why itemset support has to be

bounded and why it cannot take any value? Assume that we know
supports of all subsets of an itemset. If now we learn the support
of the itemset itself then we can completely reconstruct the
corresponding probability distribution. Depending on the itemset
support chosen we will obtain different probability distributions.
The main idea underlying the support bounding mechanism is that
since the values of the probability distribution are bounded by 0
and 1 the itemset support we vary as a parameter is also bounded
by some values. In other words, if the itemset support is too low
or too high then the uniquely reconstructed probability
distribution may well turn out to be less than 0 or greater than 1 in
some points. Formally it is expressed as follows:

nK12

. (2)

Taking this into account the next task is to reconstruct 2 values
of probability distribution from its known

support values. In the trivial case and it
follows from (2) that ≤ np K

n

nnn ppp KKK 2122 1 ≤≤−

⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝ ±

=

−

n

nn

n

p
pp

p
p

K

KK mLLLLLLm

MMMK

12

112

)0,,0,0(

123p

2x

, i.e., support is always
within the interval [0,1]. If only one variable takes value 0 then
the reconstruction is also simple and we derive that

 from which additional bounds
can be derived: . It means that support
of an itemset is less than or equal to that of any its direct subset.
Obviously, it is precisely the main optimisation used in all
association rule mining (support counting) algorithms [2].

nn ppp KKK 122)1,,1,0(−=

In general case the idea of reconstructing the probability
distribution given its supports consists in finding cross-sum
between two points in the lattice:

⎟
⎟
⎞

⎜
⎜
⎛

−− p
p

LLLLLL1
 (3)

Thus for each candidate itemset for which we are estimating
support bounds we need to calculate the cross-sum (3) between
each its subset and the candidate itemset . Each such cross-
sum is used to calculate new bounds according to (2).

np K12

For example, in Fig. 2 we have one candidate itemset of rank 3
with unknown support . We need to find its support quota in
order to predict (without explicit frequency counting through the
dataset) if it can be dependent or not. First, we reconstruct 3
dimensional probability distribution by finding cross-sum of
supports between each of 7 subsets and the candidate itemset. For
example, for itemset the cross sum is =)0,1,0(p

=+−− 12323122 pppp 1237610 p+−−+
20=p

233 123 ≤≤ p

. Assuming that this

value must be between 0 and we derive using (2) two
bounds: . From this constraint we see that the
candidate itemset is guaranteed to have support greater than 3. To
get the most precise tight bounds we need to repeat this procedure
for all subsets. In particular, for the empty set we obtain

=)0,0,0(p −+++−− 1232313121 ppppppp
5123 ≤≤ p

123123 == pq

=− 32 p
 and derive the upper bound: . Finally,

we get that the interval of possible support values is [3,5] with the
support quota

1235 p− 15−

2ˆ123 − p(.

Upper bound by conventional
association rule mining
algorithm is not tight

0 ≤ p(0,1,0) = +10-6-7+p123 = -3+p123 → p123 ≥ 3

p123

p1 p23 p13
p2 p3 p1

p 20

12 10 14

6 8 7

?

0 ≤ p(0,0,0) = +20-12-10-14+6+8+7-p123 = 5-p123 → p123 ≤ 5

20

0

3
5
6

q123=5-3=2

Figure 2. Support bounding.

The support quota (2 in our example) allows us to determine in
advance if this itemset can be interesting or not because support
quota restricts dependence value : nd K12

nnnnnn qppppd KKKKKK
(

121212121212)ˆ(|~||| =−≤−=

),,,(21 nxxxp K

np K12

. (4)

Here we assume that expected support is always within the
interval of possible values what is quite natural but must be
guaranteed by the corresponding algorithm. For example, for
linear models this condition is not satisfied while for log-linear
models it is so.
For our algorithm the most important property of support quota is
that it may only decrease with the itemset size. A formal proof of
this fact can be found in [9]. Thus if we found support quota for a
candidate itemset we can predict not only its own dependence
value but also that for all its supersets. For example in Fig. 2 it
means that no one superset of the candidate 3-itemset can have
quota and dependence greater than 2. Notice here that absolute
values of support do not play any role and it is the difference
between maximum and minimum possible support that determines
if we continue the search in this direction or stop. Intuitively it is
clear that support quota drops 2 times faster with the rank, i.e.,
quota of a direct superset is at least 2 times less than that for its
parent. However with no proof we regard it as a hypothesis.

4. MINING DEPENDENCE RULES
The computational kernel of the Quota algorithm implemented in
C++ in Windows is aimed at finding itemsets with high support
quota and cutting off all itemsets with the support quota less than
the specified threshold specified in % as a minimum (absolute)
dependence (minDep parameter). For example, minimum
dependence 1% means that the quota of each itemset must be at
least 1% of the dataset size. From computational point of view the
primary distinction of the algorithm is that we use support quota
as the main restricting parameter instead of an absolute value of
support. Yet the minimum support threshold can be specified as a
secondary parameter, e.g., to guarantee statistical significance.
Notice however that minimum quota effectively restricts itemset
support so that minimum support has to be specified only if it is
greater than quota.
The algorithm carries out the conventional level-wise search and
its main loop consists of three methods: generate new set of
candidates by estimating which of them might be interesting,
count frequencies of all existing candidate itemsets from the
dataset, prune candidates on the basis of their real parameters.
Notice that the quota mining kernel does not need to know
expected support of generated itemsets. So essentially we do not
need to know if generated itemsets are interesting or not (just like
in association rule mining we do not need to know which itemsets

produce high confidence rules). However, it is convenient to find
expected support and thus dependent itemsets during the search,
e.g., to restrict the maximum number of interesting itemsets.
Frequency counting and pruning have been implemented in the
conventional way. For finding real frequencies we increment each
itemset covered by one transaction while pruning is reduced to
removing low support itemsets.
The original part of the Quota algorithm is the candidate
generation procedure. For each existing itemset it tries to build all
its supersets by adding one item (with the number greater than
any existing in the itemset). For each new syntactically correct
candidate this procedure calculates its lower/upper support
bounds. Depending on these bounds the algorithm decides if the
itemset has to be built and included into the lattice. In our case
only itemsets with high enough support quota and upper bound
are built. Notice that even for mining frequent itemsets such an
approach is more efficient because we find tight upper bound,
which allows the algorithm to prune some branches earlier. For
example, 3-itemset in Fig. 2 will be rejected by our algorithm and
accepted by Apriori in the case of minimum support 5.5.
Candidate itemset lower/upper bounds estimation is the most
difficult procedure since it requires passing through all the subsets
and for each of them calculating cross-sum between this and the
candidate itemset. Yet this is compensated by early detection of
dead branches and the overhead is extremely low for large
dataset.
To select interesting itemsets the algorithm needs to calculate
each itemset expected support. Expected frequency is calculated
from maximum entropy principle, i.e., the distribution

 reconstructed from all subset supports and
unknown ~ must have maximum entropy. (One criterion is
that its cross-product is 1.) Since there is no closed formula for
computing such an expected value for ranks 3 and higher we
apply iterative proportional fitting algorithm [10], which
sequentially approximates the distribution in all its points
decreasing the error on each step until the desired precision is
reached. There is a lot of versions of this algorithm with various
optimisations, however, we implemented our own simple variant.
After each pass over all itemsets in the sublattice it checks the
stop condition. In our algorithm we stop the process if the
difference between new (proportionally adjusted) and previous
support is lower than some threshold. If the obtained expected
value is outside the interval of possible supports then we continue
iterations with higher precision and if after that it is still outside
the interval then we simply set it to the closest interval limit.
Once expected supports have been calculated we can select
itemsets with dependence value higher than the minimum
dependence threshold. This set of interesting itemsets can be used
to generate various descriptive or predictive models including
dependence rules. To further restrict the result we can apply
additional parameters like maximal rank, coverage (antecedent
support), target variable, confidence, lift (the relation of the target
conditional probability to the default probability), leverage
(covariance between antecedent and consequent).

Table 1. Parameters of datasets used in the experiments.
Dataset Attributes Nominal Binary Items Records

A 497 0 497 497 59602
B 37 18 19 164 216688
C 15 7 8 58 31748
D 9 9 0 32 12960

Table 2. Mean support quota in % for each level (columns)

and dataset (rows). Minimum dependence is 0.1%.
Dataset 2 3 4 5 6 7

A 0.35 0.14 0.12 0
B 5.67 0.72 0.27 ?
C 6.60 1.49 0.49 0.24 0.16 0
D 24.49 6.76 1.97 0.59 0.18 0.12

Table 3. The number of dependent itemsets for each level

(columns) and dataset (rows). Minimum dependence is 0.1%.
Dataset 2 3 4 5 6 7

A 1076 368 42 0
B 5934 8021 105410 ?
C 482 527 611 168 0
D 122 258 279 14059 11972 0

Table 4. The total number of dependent itemsets for different
minimum dependence threshold (columns) and dataset (rows).

Dataset 0.1% 0.2% 0.4% 0.6% 0.8% 1%
A 1983 735 553 520 511 503
B 18084 3491 2122 1616 1232
C 1846 795 421 298 241 210
D 26720 2677 211 163 139 111

Table 5. The number of generated candidate itemsets for each

level (columns) and dataset (rows) with the specified
minimum dependence threshold. First line in each row —

with support bounding, second line — no optimisations
(Apriori).

Dataset 2 3 4 5 6 7 8
A 0.05%
no optim

69751
69751

158529
159211

8035
688836

5
?

0

B 1%
no optim

11325
11325

69304
75939

42493
152573

5036
249988

7
278701

0
?

C 0.1%
no optim

861
861

3067
3504

4346
7415

1392
6663

46
3117

0
663 43

D 0.05%
no optim

465
465

3091
3135

13854
14354

38869
41699

61833
72603

1154
5323

0
0

We applied the Quota algorithm to 4 real world data sets with
characteristics specified in Tables 1-4. To check how efficient this
algorithm is in comparison to the case where support bounding is
not used we count the number of generated candidate itemsets on
each level because it is the primary factor of performance. The
results are shown in Table 5 for some fixed minimum dependence
thresholds. We see that for different datasets we get different
performance gains. For datasets A and B the gain is dramatic
because the conventional generate-and-test approach simply
results in exponential explosion (question mark in tables), e.g.,
688836 candidate 4-itemsets against 8035 by our algorithm for
dataset A. For datasets C and D the gain is moderate. This is
because the efficiency of the described approach depends on how
many strong dependencies exists in a dataset. In particular, if a
dataset has no dependencies then this algorithm will provide no
advantage at all because all support bounds will always be equal
to their widest (default) values. On the other hand existing
dependencies narrow down these bounds for all their supersets
and the stronger the dependencies the smaller support quota
allocated for the supersets. Thus the only thing this algorithm
does is that it can efficiently and precisely use information
provided by itemset support to restrict support of its supersets. For
example, if a dataset has dependencies only of rank 8 then this
algorithm provides no advantage and generates as many
candidates as the conventional Apriori-like algorithm and only

when this level is reached its information can be used to predict
where dependencies can reside on the next level.
Dependence rules are generated from highly dependent itemsets
by calculating the target real and expected confidence, which are
guaranteed to be significantly different as well as other
parameters like coverage, lift and leverage.

5. CONCLUSION
In the paper a new original algorithm for generating dependence
rules has been described. This algorithm effectively searches for
only high support quota itemsets using the monotonicity of this
parameter. After that it finds the real dependence value of each
itemset by comparing its real support with the expected support
computed by iterative proportional fitting procedure. It allows us
to find dependent itemsets distributed non-monotonically in the
lattice. This idea is useful not only for rule induction but can be
applied to other areas and other tasks, which will be considered in
future work.

6. REFERENCES
[1] A.A. Freitas, On rule interestingness measures, Knowlege

Based Systems 12, 309-315, 1999.

[2] R. Agrawal, T. Imielinski, A. Swami. Mining association
rules between sets of items in large databases. Proc. of the
ACM SIGMOD Conference on Management of Data,
Washington, D.C., May 1993, 207–216.

[3] B. Liu, L.-P. Ku and W. Hsu, Discovering Interesting Holes
in Data, Proceedings of Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI-97), pp. 930-
935, August 23-29, 1997, Nagoya, Japan.

[4] A. Savinov, Mining Possibilistic Set-Valued Rules by
Generating Prime Disjunctions, Proc. 3rd European
Conference on Principles of Data Mining and Knowledge
Discovery (PKDD'99), LNCS No. 1704, pp. 536-541.

[5] A. Savinov, Mining Interesting Possibilistic Set-Valued
Rules, in: Fuzzy If-Then Rules in Computational
Intelligence: Theory and Applications (Eds.: Da Ruan and
Etienne E. Kerre), Kluwer, 2000, 107-133.

[6] S. Brin, R. Motwani, and C. Silverstein, Beyond market
basket: Generalizing association rules to correlations,
SIGMOD’97, pp. 265-276.

[7] C. Silverstein, S. Brin, and R. Motwani, Beyond Market
Baskets: Generalizing Association Rules to Dependence
Rules, Data Mining and Knowledge Discovery 2(1), 39-68.

[8] R. Meo, Theory of dependence values, ACM Transactions
on Database Systems, 25(3), 2000, 380-406.

[9] T. Calders and B. Goethals. Mining all non-derivable
frequent itemsets. Proc. 6th European Conference on
Principles of Data Mining and Knowledge Discovery
(PKDD’02), LNCS No. 2431, pp. 74-85.

[10] Darroch and D. Ratchli, Generalized Iterative Scaling for
Log-Linear Models, The Annals of Mathematical Statistics,
Vol. 43, No. 5, pp. 1470-1480, 1972.

[11] S. Jaroszewicz and D.A. Simovici. Pruning Redundant
Association Rules Using Maximum Entropy Principle.
Advances in Knowledge Discovery and Data Mining, 6th
Pacific-Asia Conference, PAKDD'02, 135-147.

	1. INTRODUCTION
	2. DEPENDENT ITEMSETS
	3. FINDING HIGH SUPPORT QUOTA ITEMSETS
	4. MINING DEPENDENCE RULES
	5. CONCLUSION
	6. REFERENCES

