
Grouping and Aggregation
in the Concept-Oriented Data Model

Alexandr Savinov
Fraunhofer AIS

Schloss Birlinghoven
53757 Sankt Augustin, Germany

savinov@conceptoriented.com

ABSTRACT
In the paper we describe the problem of grouping and aggregation
in the concept-oriented data model. The model is based on
ordering its elements within a hierarchical multidimensional
space. This order is then used to define all its main properties and
mechanisms. In particular, it is assumed that elements positioned
higher are interpreted as groups for their lower level elements.
Two operations of projection and de-projection are defined for
one-dimensional and multidimensional cases. It is demonstrated
how these operations can be used for multidimensional analysis.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design – Data models;
H.2.3 [Database Management]: Languages – Query languages;

General Terms
Algorithms, Management, Theory.

1. INTRODUCTION
Currently there exist several general approaches to data modelling
based on different principles and main notions such as relations in
the RM [5], entity and relationships in the ERM [4], facts and
object roles in the ORM [12], subject-predicate-object triples in
the RDF [2] and many others. In this paper we describe a new
approach to data modelling proposed in [16,17,18] and called the
concept-oriented data model (COM).
The COM belongs to a set of approaches based on using
dimension (degree of freedom) as the main construct for data
modelling. This direction has been developed in the area of
multidimensional databases [1,11,14] and online analytical
processing (OLAP) [3]. An important assumption underlying the
COM is that the whole model is viewed as one global construct
with canonical syntax and semantics. Analogous assumption is
used in the universal relation model (URM) [6,13,15]. This
assumption allows us to derive properties of elements from the
properties of the whole model as well as automate many
operations such logical navigation and query construction.
Another important assumption is that the COM is based on
ordering its elements which is analogous to concept-lattices,
formal concept analysis (FCA) [8] and ontologies [7]. This means

that elements do not possess any information except for their
position among other elements. This relative position is precisely
that determines the semantic properties of elements. In great
extent everything in the COM is about order of elements and
duality. The third assumption is that the hierarchical
multidimensional structure of the model can be used for
automating data access and logical navigation. The mechanism of
access paths and queries in the COM is very close to that used in
the functional data model (FDM) [9,10,19].
In section 2 we define the model and section 3 describes what is
meant by dimensionality. In section 4 two operations of (one-
dimensional) projection and de-projection are described while
section 5 is devoted to multidimensional analysis.

2. MODEL DEFINITION
In the concept-oriented paradigm (not only data model) we
assume that all things have two sides which are called physical
and logical. In particular, in data modelling such a separation is
used to distinguish identity modelling (how elements are
represented and accessed) from entity modelling (how elements
are characterized by other elements. Formally, two types of
element composition are distinguished: collection and
combination. An element is then represented as consisting of a
collection of other elements and a combination of other elements
from this model: 〉〈= KK ,,},,{ dcbaE . Here {} denotes a
collection and 〈〉 denotes a combination. A collection can be
viewed as a normal set with elements connected via logical OR
and identified by means of references (for example, tables with
rows). A combination is analogous to fields of an object or
columns of a table which are identified by positions (offsets) and
connected via logical AND.

 a b c

d e f

R

C U V

a b c d e f

concepts

items

model
root

g

identity (reference)
entity (properties)

physical collection
logical collection

physical membership
logical membership

Figure 1. Physical (left) and logical (right) structures.

Physical structure (Fig. 1 left) has a hierarchical form where any
element has a single parent which provides the means of
representation and access (RA) for its members. For example,
tables are physically living in a database while records are living
in tables. Physical structure can be easily produced by removing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’06, April 23–27, 2006, Dijon, France.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Proc. 21st ACM Symposium on Applied Computing (SAC 2006),
April 23-27, 2006, Dijon, France, 482-486

all properties (fields, columns etc.) from elements:
〈〉= },,{ KbaE . Physical inclusion can be thought of as inclusion

by value, i.e., we assume that any element has some physical
position by value within some other element (physical container).
In the context of this paper it is important to understand that
physical inclusion can be used for grouping. For example, if

〈〉= },,{ KbaE then elements a and b physically belong to one
group E. However, one property of physical structure is that it is
immutable because elements cannot change their parent group.
Logical structure (Fig. 1 right) appears when elements get some
properties. The combinational part is not empty and elements are
referencing other elements of the model. Such a referencing is a
method of mutual characterization. For example, element

〉〈= KK ,,}{ dcE is referencing elements c and d and we say that
E is characterized by values c and d. Logical structure provides
the second method for grouping using the following principle: an
element belongs to all elements it combines (references). In other
words, object properties are groups for the object they
characterize. On the other hand, an object is a group for all objects
that reference it. In contrast to physical grouping, logical grouping
has two advantages: an element may belong to many groups
simultaneously and this structure is not constant so that element
can change its parent groups by changing its field values.

Customers

Countries

Orders

Top

OrderParts

Months

Products

Categories

order

customer

country

product

category

date

month

Dates

Figure 2. An example of the model syntax.

From the point of view of physical structure we distinguish three
types of the model: (i) one-level model has one root and a number
of data items in it, (ii) two-level model has one root, a number of
concepts in it, each of them having a number of data items, (iii)
multi-level model has an arbitrary number of levels in the physical
hierarchy. In this paper we consider only the two-level model
defined as consisting of the following elements:
[Root] One root element R is a physical collection of concepts,

},,,{ 21 NCCCR K= ;

[Syntax] Each concept is (i) a combination of other concepts
called superconcepts (while this concept is a subconcept), and
(ii) a physical collection of data items (or concept instances),

RiiCCCC n ∈〉〈= },,{,,, 2121 KK ;

[Semantics] Each data item is (i) a combination of other data
items called superitems (while this item is a subitem), and (ii)
empty physical collection, Ciiii n ∈〉〈= {},,, 21 K ;

[Special elements] If a concept does not have a superconcept then
it is assumed to be one common top concept; with direct
subconcepts called primitive concepts, and if a concept does
not have a subconcept then it is assumed to be one common

bottom concept, and an absence of superitem is denoted by
one special null item.

[Cycles] Cycles in subconcept-superconcept relation and subitem-
superitem relation are not allowed,

[Syntactic constraints] Each data item from a concept may
combine only items from its superconcepts.

Fig. 2 is an example of a logical concept structure (the root
element and items are not shown) where each concept is a
combination of its superconcepts. For example, concept Orders
is a combination of superconcepts Customers and Dates. It
has one subconcept OrderParts which is also the bottom
concept of the model. In this case an order item (instance of
Orders) is logically a member of one customer item and one
date item. At the same time one order item logically includes a
number of order parts which are its subitems. One order part is
logically included into one order and one product.

3. MODEL DIMENSIONALITY
A named link from subconcept to a superconcept is referred to as
dimension. A dimension can be also viewed as a unique position
of a superconcept in the definition of subconcept:

〉〈= nn CxCxCxC :,,:,: 2211 K . Superconcepts nCCC ,,, 21 K
are called domains or ranges for dimensions nxxx ,,, 21 K ,

)Dom(jj xC = . The model syntactic structure can be represented
by a directed acyclic graph where nodes are concepts and edges

are dimensions (Fig. 2 and 3). A dimension kxxxx ... 21 L= of
rank k is a sequence of k dimensions where each next dimension
belongs to the domain of the previous one. Dimensions will be

frequently prefixed by the very first concept: kxxxC 21 L .
Each dimension is represented by one path in the concept graph.
The number of edges in the path is the dimension rank. A
dimension with the primitive domain is referred to as primitive
dimension. For example, Auctions.product.category
(Fig. 3) is a primitive dimension of rank 2 from the source
concept Auctions to its superconcept Categories. There
may be several different paths (dimensions) between a concept
and its superconcept. The number of different primitive
dimensions of a concept is referred to as the concept primitive
dimensionality. The length of the longest dimension of a concept
is referred to as concept rank. The dimensionality and rank of the
whole model are equal to that of the bottom concept. Thus any
concept-oriented model is characterized by two parameters: (i)
model rank describing its hierarchy (depth), and (ii) model
dimensionality describing its multidimensionality (width). The
models in Fig. 2 and 3 are 3-dimensional and 6-dimensional,
respectively, however, both have rank 3.
Inverse dimension is a dimension with the opposite direction, i.e.,
where a dimension starts the inverse dimension has its domain,
and where a dimension ends the inverse dimension has its start. In
concept graph inverse dimension is a path from superconcept to
some its subconcept. Inverse dimensions do not have their own
identifiers. Instead, we apply an operator of inversion by
enclosing the corresponding dimension into curly brackets. If

kxxxC 21 L is a dimension of concept C with rank k then

}....{ 21 kxxxC L is inverse dimension of concept)Dom(kx with
the domain in C and the same rank k. An important thing is that
any concept is characterized by (i) a set of dimensions leading to

superconcepts and (ii) a set of inverse dimensions leading to
subconcepts. For example, an order (Fig. 2) is characterized by
two dimensions (date and customer), as well as one inverse
dimension {OrderParts.order}. Such a duality is one of the
distinguishing features of the COM because it allows us to
characterize items as a combination of (more general) superitems
and a collection of (more specific) subitems.

Prices Users

Auctions

Top

AuctionBids
auction

Dates

Products

Categories

price
user

date
product

category

date
user

Figure 3. An example of logical structure of dimensions.

4. PROJECTION AND DE-PROJECTION
Given an item or a set of items it is possible to get related items
by specifying some path in the concept graph. Informally, if we
move up along a dimension to superitems then it is thought of as
an operation of projection. If we move down along an inverse
dimension to subitems then it is de-projection.
If d is a dimension of C with the domain in superconcept

)Dom(dU = then operation dI → , CI ⊆ , is referred to as
projection of items from I along dimension d. It returns a set of
superitems referenced by items from I:

} ,|{ CIiudiUudI ⊆∈=→∈=→ . Each item from U can be
included into the result collection (projection) only one time. If
we need to include superitems as many times as they are
referenced then dot operation has to be used instead of arrow, i.e.,

xI . includes all referenced superitems from U even if they occur
more than once. The operation of projection (arrow) can be
applied consecutively. For example, if A is a collection of today’s
auctions then A->product->category will return a set of
today’s categories while A.product.category will return
categories for all auctions in A (as many categories as we have
auctions). If P is a subset of order parts then projection
P->order->customer->country is a set of countries.

If }{d is an inverse dimension of C with the domain in
subconcept })Dom({dS = then de-projection of I to S along }{d
consists of all subitems that reference items from I via dimension
d: } ,|{}{ CIiidsSsdI ⊆∈=→∈=→ . For example, if C is a
set of auction product categories then C->{Auctions
->product->category} is a set of all auctions with the
products having these categories. Given month m we can get all
related orders by de-projecting it onto concept Orders:
m->{Orders->date->month}.

Dimension d specifying a path from a subconcept to some its
superconcept is referred to as bounding dimension. Access path is
a sequence of dimensions or inverse dimensions separated either
by dot or by arrow where each next operation is applied to the
result collection returned by the previous operation. An access
path has a zigzag form in the concept graph where dimensions

move up to a superconcept while inverse dimensions move down
to a subconcept in the concept graph.
It is possible to restrict items that are returned by de-projection
operation by providing a condition that all items from the domain
subconcept have to satisfy:

} ,true)(|{)}(|:{ CIisfidsSssfdSsI ⊆∈=∧=→∈=→→

Here d is a bounding dimension from subconcept S to the source
collection I; s is an instance variable that takes all values from set
S and the predicate f (separated by bar) must be true for all items s
included into the result collection (de-projection). For example,
access path
C->{a : Auction->product->category |
 a.date==today}

will return all today’s auctions for the subset of categories from C.
Frequently we need to have aggregated characteristics of items
computed from related items. This can be done by defining a
derived property of concept which is a named definition of a
query returning one or more items for each item from this
concept. For example, we could define a derived property
allBids of concept Auctions returning a collection of all
bids for one auction:
Auctions.allBids =
 this->{ AuctionBids->auction }

(Keyword this is an instance variable referencing the current
item of the concept.) Derived properties can use other properties:
Auctions.maxBid = max(this.allBids.price)

Here we get a set of all bids by applying existing property
allBids to the current item, then get their prices via dot
operation and then find the maximum price. In the same way we
might compute the mean price for ten days for one category:
Category.meanPriceForTenDays = avg({ab in
 AuctionBids->auction->product->category |
 ab.auction.date > today-10 }.price);

5. MULTIDIMENSIONAL ANALYSIS
The mechanism of access path is based on the assumption that
there is only one bounding dimension between source
superconcept and target subconcept. If target subitems can be
bound to source superitems along several dimensions
simultaneously then we get the case of multidimensional grouping
and aggregation (Fig. 4). For example, order parts can be grouped
using two dimensions country and category. One group is a
combination of one county item and one category item and
consists of a collection of associated order parts (Fig. 2).

If I is a subset of items from the source concept C, CI ⊆ , S is
some subconcept of C, and nddd ,,, 21 K are different
dimensions of S with the domain in C, Cd j =)(Dom ,

nj ,,2,1 K= , then multidimensional de-projection of I to S is
defined as a set of subitems Ss∈ that reference source items

Ii∈ along all dimensions: (Fig. 4)

} ,|{},,,{ 121 IiidsidsSsdddI nn ∈=→∧∧=→∈=→ KK

Grouping and aggregation by means of the operation of
multidimensional de-projection can be used for online analytical
processing (OLAP). This approach consists in choosing some

target subconcept the items of which we want to group and
aggregate. Then it is necessary to specify several dimension paths
from this concept along which we want to analyze data. The level
of details can be varied by choosing source superconcepts along
each of these dimension paths. The source multidimensional
concept is the Cartesian product of all the domain concepts chosen
along dimension paths. Finally, the source items are de-projected
onto the target concept by producing groups of items that can be
aggregated.

S

A group item Multidimensional source
concept with groups

Target concept

C

d1 d2 dn ... Dimensions
Items from de-

projection

Figure 4. Multidimensional de-projection.

Let us assume that S is the target concept with items to be grouped
and aggregated. In concept S we select a number of dimension
paths nppp ,,, 21 K which will be used for analysis. A level

〉〈= nlllL ,,, 21 K is a set of integers specifying ranks along these
dimension paths. Then nddd ,,, 21 K are dimensions of concept S
with ranks nlll ,,, 21 K and domains nDDD ,,, 21 K ,

)(Dom jj dD = , nj ,,2,1 K= . For example,
order.customer.country and product.category are
two dimension paths of the target concept OrderParts (Fig. 2).
We might choose level 〉〈= 1,2L for initial analysis, which
produces dimensions OrderParts.order.customer and
OrderParts.product with domains Customers and
Products, respectively.

For each level the universe of discourse (called multidimensional
cube in OLAP) is defined as a set of all possible items produced
from the corresponding domains:

}|,,,{ 2121 jjnnL DDDD ∈〉〈==×××=Ω ωωωωω KK

Multidimensional projection of a set of items SI ⊆ to level L is a
set of points from the cube LΩ referenced by items from I via
dimensions nddd ,,, 21 K of level L:

} ,|{ 1 SIididiLI nL ⊆∈=→∧∧=→Ω∈=→ ωωω K

Multidimensional de-projection of a subset of items LI Ω⊆
(where LΩ is defined by level L) is a set of items from S with
projection in I:

} ,|{}{ 1 Ln IdsdsSsLI Ω⊆∈=→∧∧=→∈=→ ωωω K

In the concept-oriented query language the source domains are
listed after the keyword FORALL, for example:
N = FORALL(c Customers, p Products) { ... }

It can be thought of as iteration over all combinations of
customers and products although the order is not dictated and the
procedure can be optimized. A query returns a new collection of
items which can be stored in a variable. Items returned from such

a query are specified via keyword RETURN normally using some
conditions specified via keyword IF, for example:
FORALL(c Customers, p Products) {
 IF(count(c->{Orders->customer}) > 5
 && p.category=’cars’) RETURN(c, p);
}

This query selects only items from the source 2-dimensional space
if the customer has more than 5 orders and the product is a car.
Note that in order to compute the number of orders for the current
customer we de-project it to the subconcept Orders and then
apply aggregation function count to a set of orders.

Suppose that S=OrderParts is the target concept which is
projected to the source concept along two dimension paths
p1=OrderParts.order.customer.country (3 levels)
and p2=OrderParts.product.category (2 leves). If it is
necessary to analyze dependencies between customers and
products then each their combination <c,p> (or keyword this)
is de-projected into concept OrderParts along two dimensions
and the result collection stored in the local variable tmp:
FORALL(c Customers, p Products) {
 IF(count(c->{Orders->customer}) > 5)) {
 tmp=<c,p>->{ OrderParts.order.customer,
 OrderParts.product };
 RETURN <c, p, avg(tmp.price) >;
 }
}

The intermediate local variable tmp stores a collection of order
parts associated with the current customer and the current product
(and element of 2-dimensional cube). For each such combination
the query returns an average price in addition to the customer and
product.

An operation of increasing rank jl (one constituent of level) of

one dimension jd is referred to as roll up. An operation of

decreasing rank jl of one dimension jd is referred to as drill
down. If all level constituents are 0s then we get concept S which
contains the most detailed information used for analysis. If all
level constituents are 1s then we get a set of dimensions with rank
1 and direct superconcepts of S as domains.
For example, we can get more general distribution of average
price along countries (instead of individual customers) and
categories (instead of individual products) by rolling up
(increasing dimensions rank) along both dimensions:
FORALL(c Countries, p Categories) {
 tmp =
 <c,p>->{OrderParts.order.customer.country,
 OrderParts.product.category };
 IF(count(tmp) > 5)
 RETURN <c, p, avg(tmp.price) >;
}

This query computes 2-dimensional de-aggregation for each
source point <c,p> and then returns average price for only those
having more than 5 order parts.
An interesting feature of the COM is that in many cases the access
path can be computed automatically. In order to retrieve the
necessary data it is enough only to impose constraints and to
indicate the target concept. The idea is that the constraints are

propagated automatically downward in the concept graph till the
very bottom. After that this (constrained) information from the
most specific level is used to retreive items from the target
concept. For example (Fig. 2), let us assume that we want to get
all categories for some country and month. Instead of specify a
concrete query we can simply impose these constraints while the
model will do all the rest itself: This could be written as the
following query:
Months = {m Months | m == 'June' }
Countries = {c Countries | c == 'Germany' }
N = FORALL(c Categories) {
 tmp = c->{OrderParts->product->category}
 ->order
 RETURN <c, sum(tmp.price) >;
}

In the first two lines we simply redefine the two existing concepts
by restricting their items. (These constraints are visible only from
the current and all internal contexts but not from outside.) They
are propagated downward by de-projecting till the concept
OrderParts, which will contain only order parts for the
specified country and month. The restricted order parts are then
propagated upward to the target concept Categories by means
of projection. This means that only categories for the selected
order parts will satisfy the initial constraints. The query returns a
category item as well as the total price of its orders. In order to
compute this price we de-project the current category to
OrderParts and then project it to Orders. A collection of all
orders related to the current category is stored in a local variable
and then the order price is summed up in return statement.
In more complex cases the constraint propagation path can be
ambiguous and needs to be specified explicitly, say, by indicating
some intermediate concept. For example, if we want to get all
auction product categories related to some user then there exist
two paths for constraint propagation: through the concept
AuctionBids and through the concept Auctions.

6. CONCLUSIONS
In comparison to existing data models the proposed approach has
a number of advantages and distinguishing features. It is an
integrated full-featured model rather than a specific mechanism or
auxiliary technology. This means that all necessary mechanisms
exist within this very model. Another distinguishing feature of the
concept-oriented model is its simplicity. By using only a few main
constructs it is possible to implement all the most important data
modelling mechanisms and manipulation techniques. Indeed,
ordered sets of concepts and items as well as dimensions is
enough to derive such data modelling constructs as multi-valued
attributes, multidimensional cubes, measures, joins etc. It can be
said that everything in the concept-oriented model is about order
and duality because these two phenomena are of crucial
importance for defining its properties. In particular, the relative
order of an element defines its semantics. Data access and
analysis are based on operations of projection and de-projection,
which also reflect the order of elements and duality. As a result
this model solves the problem of logical navigation by avoiding
complex joins. The order of elements and these two operations
also allow us to integrate the mechanism of grouping and
aggregation into the model as its natural part rather than an
additional (analytical) layer. All items are naturally grouped in the
model while cubes, dimensions, measures are roles assigned to
elements of the model for the purpose of concrete analysis task.

7. REFERENCES
[1] R. Agrawal, A. Gupta and S. Sarawagi, Modeling

multidimensional databases, Proc. 13th International
Conference on Data Engineering (ICDE’97), 232-243, 1997.

[2] T. Berners-Lee, J. Hendler and O. Lassila, The Semantic
Web, Scientific American, May 2001.

[3] A. Berson and S.J. Smith, Data warehousing, data mining,
and OLAP, New York, McGraw-Hill, 1997.

[4] Peter Pi-Shan Chen: The Entity-Relationship Model. Toward
a Unified View of Data. In: ACM Transactions on Database
Systems 1/1/1976 ACM-Press ISSN 0362-5915, S. 9-36

[5] E.F. Codd, A relational model of data for large shared data
banks, Communications of the ACM 13(6), 377-387, 1970.

[6] R. Fagin, A.O. Mendelzon, J.D. Ullman, A Simplified
Universal Relation Assumption and Its Properties. ACM
Trans. Database Syst. 7(3), 343-360, 1982.

[7] D. Fensel, Ontologies: a silver bullet for knowledge
management and electronic commerce. Springer, 2004.

[8] B. Ganter and R. Wille, Formal Concept Analysis:
Mathematical Foundations, Springer, 1999.

[9] P.M.D. Gray, P.J.H. King and L. Kerschberg (eds.),
Functional Approach to Intelligent Information Systems. J.
of Intelligent Information Systems 12, 107–111, 1999.

[10] P.M.D. Gray, L. Kerschberg, P. King, and A. Poulovassilis
(eds.), The Functional Approach to Data Management:
Modeling, Analyzing, and Integrating Heterogeneous Data,
Heidelberg, Germany, Springer, 2004.

[11] M. Gyssens and L.V.S. Lakshmanan, A foundation for multi-
dimensional databases, Proc. 23th VLDB '97, Athens,
Creece, 106-115, 1997.

[12] T.A. Halpin, Entity Relationship modeling from ORM
perspective. Journal of Conceptual Modeling
(www.inconcept.com/jcm), 11, 1999.

[13] W. Kent, Consequences of assuming a universal relation,
ACM Trans. Database Syst., 6(4), 539-556, 1981.

[14] C. Li and X.S. Wang, A data model for supporting on-line
analytical processing, Proc. Conference on Information and
Knowledge Management, Baltimore, MD, 81-88, 1996.

[15] D. Maier, J. D. Ullman, and M. Y. Vardi, On the foundation
of the universal relation model, ACM Trans. on Database
System (TODS), 9(2), 283-308, 1984.

[16] A. Savinov, Principles of the Concept-Oriented Data Model,
Technical Report, Institute of Mathematics and Informatics.

[17] A. Savinov, Logical Navigation in the Concept-Oriented
Data Model. Journal of Conceptual Modeling,
http://www.inconcept.com/jcm, August 2005.

[18] A. Savinov, Hierarchical Multidimensional Modelling in the
Concept-Oriented Data Model, 3rd International Conference
on Concept Lattices and Their Applications (CLA’05),
Olomouc, Czech Republic, September 7-9, 2005, 123-134.

[19] D.W. Shipman, The Functional Data Model and the Data
Language DAPLEX. ACM Transactions on Database
Systems, 6(1), 140–173, 1981.

