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ABSTRACT 
In the paper we describe the problem of grouping and aggregation 
in the concept-oriented data model. The model is based on 
ordering its elements within a hierarchical multidimensional 
space. This order is then used to define all its main properties and 
mechanisms. In particular, it is assumed that elements positioned 
higher are interpreted as groups for their lower level elements. 
Two operations of projection and de-projection are defined for 
one-dimensional and multidimensional cases. It is demonstrated 
how these operations can be used for multidimensional analysis.  

Categories and Subject Descriptors 
H.2.1 [Database Management]: Logical Design – Data models; 
H.2.3 [Database Management]: Languages – Query languages;  

General Terms 
Algorithms, Management, Theory.  

1. INTRODUCTION 
Currently there exist several general approaches to data modelling 
based on different principles and main notions such as relations in 
the RM [5], entity and relationships in the ERM [4], facts and 
object roles in the ORM [12], subject-predicate-object triples in 
the RDF [2] and many others. In this paper we describe a new 
approach to data modelling proposed in [16,17,18] and called the 
concept-oriented data model (COM).  
The COM belongs to a set of approaches based on using 
dimension (degree of freedom) as the main construct for data 
modelling. This direction has been developed in the area of 
multidimensional databases [1,11,14] and online analytical 
processing (OLAP) [3]. An important assumption underlying the 
COM is that the whole model is viewed as one global construct 
with canonical syntax and semantics. Analogous assumption is 
used in the universal relation model (URM) [6,13,15]. This 
assumption allows us to derive properties of elements from the 
properties of the whole model as well as automate many 
operations such logical navigation and query construction. 
Another important assumption is that the COM is based on 
ordering its elements which is analogous to concept-lattices, 
formal concept analysis (FCA) [8] and ontologies [7]. This means 

that elements do not possess any information except for their 
position among other elements. This relative position is precisely 
that determines the semantic properties of elements. In great 
extent everything in the COM is about order of elements and 
duality. The third assumption is that the hierarchical 
multidimensional structure of the model can be used for 
automating data access and logical navigation. The mechanism of 
access paths and queries in the COM is very close to that used in 
the functional data model (FDM) [9,10,19].  
In section 2 we define the model and section 3 describes what is 
meant by dimensionality. In section 4 two operations of (one-
dimensional) projection and de-projection are described while 
section 5 is devoted to multidimensional analysis.  

2. MODEL DEFINITION  
In the concept-oriented paradigm (not only data model) we 
assume that all things have two sides which are called physical 
and logical. In particular, in data modelling such a separation is 
used to distinguish identity modelling (how elements are 
represented and accessed) from entity modelling (how elements 
are characterized by other elements. Formally, two types of 
element composition are distinguished: collection and 
combination. An element is then represented as consisting of a 
collection of other elements and a combination of other elements 
from this model: 〉〈= KK ,,},,{ dcbaE . Here {} denotes a 
collection and 〈〉  denotes a combination. A collection can be 
viewed as a normal set with elements connected via logical OR 
and identified by means of references (for example, tables with 
rows). A combination is analogous to fields of an object or 
columns of a table which are identified by positions (offsets) and 
connected via logical AND.  
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Figure 1. Physical (left) and logical (right) structures.  
 
Physical structure (Fig. 1 left) has a hierarchical form where any 
element has a single parent which provides the means of 
representation and access (RA) for its members. For example, 
tables are physically living in a database while records are living 
in tables. Physical structure can be easily produced by removing 
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all properties (fields, columns etc.) from elements: 
〈〉= },,{ KbaE . Physical inclusion can be thought of as inclusion 

by value, i.e., we assume that any element has some physical 
position by value within some other element (physical container). 
In the context of this paper it is important to understand that 
physical inclusion can be used for grouping. For example, if 

〈〉= },,{ KbaE  then elements a and b physically belong to one 
group E. However, one property of physical structure is that it is 
immutable because elements cannot change their parent group.  
Logical structure (Fig. 1 right) appears when elements get some 
properties. The combinational part is not empty and elements are 
referencing other elements of the model. Such a referencing is a 
method of mutual characterization. For example, element 

〉〈= KK ,,}{ dcE  is referencing elements c and d and we say that 
E is characterized by values c and d. Logical structure provides 
the second method for grouping using the following principle: an 
element belongs to all elements it combines (references). In other 
words, object properties are groups for the object they 
characterize. On the other hand, an object is a group for all objects 
that reference it. In contrast to physical grouping, logical grouping 
has two advantages: an element may belong to many groups 
simultaneously and this structure is not constant so that element 
can change its parent groups by changing its field values.  
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Figure 2. An example of the model syntax.  

 
From the point of view of physical structure we distinguish three 
types of the model: (i) one-level model has one root and a number 
of data items in it, (ii) two-level model has one root, a number of 
concepts in it, each of them having a number of data items, (iii) 
multi-level model has an arbitrary number of levels in the physical 
hierarchy. In this paper we consider only the two-level model 
defined as consisting of the following elements:  
[Root] One root element R is a physical collection of concepts, 

},,,{ 21 NCCCR K= ;  

[Syntax] Each concept is (i) a combination of other concepts 
called superconcepts (while this concept is a subconcept), and 
(ii) a physical collection of data items (or concept instances), 

RiiCCCC n ∈〉〈= },,{,,, 2121 KK ;  

[Semantics] Each data item is (i) a combination of other data 
items called superitems (while this item is a subitem), and (ii) 
empty physical collection, Ciiii n ∈〉〈= {},,, 21 K ;  

[Special elements] If a concept does not have a superconcept then 
it is assumed to be one common top concept; with direct 
subconcepts called primitive concepts, and if a concept does 
not have a subconcept then it is assumed to be one common 

bottom concept, and an absence of superitem is denoted by 
one special null item.  

[Cycles] Cycles in subconcept-superconcept relation and subitem-
superitem relation are not allowed,  

[Syntactic constraints] Each data item from a concept may 
combine only items from its superconcepts.  

Fig. 2 is an example of a logical concept structure (the root 
element and items are not shown) where each concept is a 
combination of its superconcepts. For example, concept Orders 
is a combination of superconcepts Customers and Dates. It 
has one subconcept OrderParts which is also the bottom 
concept of the model. In this case an order item (instance of 
Orders) is logically a member of one customer item and one 
date item. At the same time one order item logically includes a 
number of order parts which are its subitems. One order part is 
logically included into one order and one product.  

3. MODEL DIMENSIONALITY  
A named link from subconcept to a superconcept is referred to as 
dimension. A dimension can be also viewed as a unique position 
of a superconcept in the definition of subconcept: 

〉〈= nn CxCxCxC :,,:,: 2211 K . Superconcepts nCCC ,,, 21 K  
are called domains or ranges for dimensions nxxx ,,, 21 K , 

)Dom( jj xC = . The model syntactic structure can be represented 
by a directed acyclic graph where nodes are concepts and edges 

are dimensions (Fig. 2 and 3). A dimension kxxxx ... 21 L=  of 
rank k is a sequence of k dimensions where each next dimension 
belongs to the domain of the previous one. Dimensions will be 

frequently prefixed by the very first concept: kxxxC .... 21 L . 
Each dimension is represented by one path in the concept graph. 
The number of edges in the path is the dimension rank. A 
dimension with the primitive domain is referred to as primitive 
dimension. For example, Auctions.product.category 
(Fig. 3) is a primitive dimension of rank 2 from the source 
concept Auctions to its superconcept Categories. There 
may be several different paths (dimensions) between a concept 
and its superconcept. The number of different primitive 
dimensions of a concept is referred to as the concept primitive 
dimensionality. The length of the longest dimension of a concept 
is referred to as concept rank. The dimensionality and rank of the 
whole model are equal to that of the bottom concept. Thus any 
concept-oriented model is characterized by two parameters: (i) 
model rank describing its hierarchy (depth), and (ii) model 
dimensionality describing its multidimensionality (width). The 
models in Fig. 2 and 3 are 3-dimensional and 6-dimensional, 
respectively, however, both have rank 3.  
Inverse dimension is a dimension with the opposite direction, i.e., 
where a dimension starts the inverse dimension has its domain, 
and where a dimension ends the inverse dimension has its start. In 
concept graph inverse dimension is a path from superconcept to 
some its subconcept. Inverse dimensions do not have their own 
identifiers. Instead, we apply an operator of inversion by 
enclosing the corresponding dimension into curly brackets. If 

kxxxC .... 21 L  is a dimension of concept C with rank k then 

}....{ 21 kxxxC L  is inverse dimension of concept )Dom( kx  with 
the domain in C and the same rank k. An important thing is that 
any concept is characterized by (i) a set of dimensions leading to 



superconcepts and (ii) a set of inverse dimensions leading to 
subconcepts. For example, an order (Fig. 2) is characterized by 
two dimensions (date and customer), as well as one inverse 
dimension {OrderParts.order}. Such a duality is one of the 
distinguishing features of the COM because it allows us to 
characterize items as a combination of (more general) superitems 
and a collection of (more specific) subitems.  
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Figure 3. An example of logical structure of dimensions.  

 

4. PROJECTION AND DE-PROJECTION  
Given an item or a set of items it is possible to get related items 
by specifying some path in the concept graph. Informally, if we 
move up along a dimension to superitems then it is thought of as 
an operation of projection. If we move down along an inverse 
dimension to subitems then it is de-projection.  
If d is a dimension of C with the domain in superconcept 

)Dom(dU =  then operation dI → , CI ⊆ , is referred to as 
projection of items from I along dimension d. It returns a set of 
superitems referenced by items from I: 

} ,|{ CIiudiUudI ⊆∈=→∈=→ . Each item from U can be 
included into the result collection (projection) only one time. If 
we need to include superitems as many times as they are 
referenced then dot operation has to be used instead of arrow, i.e., 

xI .  includes all referenced superitems from U even if they occur 
more than once. The operation of projection (arrow) can be 
applied consecutively. For example, if A is a collection of today’s 
auctions then A->product->category will return a set of 
today’s categories while A.product.category will return 
categories for all auctions in A (as many categories as we have 
auctions). If P is a subset of order parts then projection  
P->order->customer->country is a set of countries.  

If }{d  is an inverse dimension of C with the domain in 
subconcept })Dom({dS =  then de-projection of I to S along }{d  
consists of all subitems that reference items from I via dimension 
d: } ,|{}{ CIiidsSsdI ⊆∈=→∈=→ . For example, if C is a 
set of auction product categories then C->{Auctions 
->product->category} is a set of all auctions with the 
products having these categories. Given month m we can get all 
related orders by de-projecting it onto concept Orders:  
m->{Orders->date->month}.  

Dimension d specifying a path from a subconcept to some its 
superconcept is referred to as bounding dimension. Access path is 
a sequence of dimensions or inverse dimensions separated either 
by dot or by arrow where each next operation is applied to the 
result collection returned by the previous operation. An access 
path has a zigzag form in the concept graph where dimensions 

move up to a superconcept while inverse dimensions move down 
to a subconcept in the concept graph. 
It is possible to restrict items that are returned by de-projection 
operation by providing a condition that all items from the domain 
subconcept have to satisfy:  

} ,true)(|{)}(|:{ CIisfidsSssfdSsI ⊆∈=∧=→∈=→→  

Here d is a bounding dimension from subconcept S to the source 
collection I; s is an instance variable that takes all values from set 
S and the predicate f (separated by bar) must be true for all items s 
included into the result collection (de-projection). For example, 
access path  
C->{a : Auction->product->category |  
    a.date==today}  

will return all today’s auctions for the subset of categories from C.  
Frequently we need to have aggregated characteristics of items 
computed from related items. This can be done by defining a 
derived property of concept which is a named definition of a 
query returning one or more items for each item from this 
concept. For example, we could define a derived property 
allBids of concept Auctions returning a collection of all 
bids for one auction:  
Auctions.allBids =  
  this->{ AuctionBids->auction }  

(Keyword this is an instance variable referencing the current 
item of the concept.) Derived properties can use other properties:  
Auctions.maxBid = max( this.allBids.price )  

Here we get a set of all bids by applying existing property 
allBids to the current item, then get their prices via dot 
operation and then find the maximum price. In the same way we 
might compute the mean price for ten days for one category:  
Category.meanPriceForTenDays = avg( {ab in  
  AuctionBids->auction->product->category |  
  ab.auction.date > today-10 }.price );  

5. MULTIDIMENSIONAL ANALYSIS  
The mechanism of access path is based on the assumption that 
there is only one bounding dimension between source 
superconcept and target subconcept. If target subitems can be 
bound to source superitems along several dimensions 
simultaneously then we get the case of multidimensional grouping 
and aggregation (Fig. 4). For example, order parts can be grouped 
using two dimensions country and category. One group is a 
combination of one county item and one category item and 
consists of a collection of associated order parts (Fig. 2).  

If I is a subset of items from the source concept C, CI ⊆ , S is 
some subconcept of C, and nddd ,,, 21 K  are different 
dimensions of S with the domain in C, Cd j =)(Dom , 

nj ,,2,1 K= , then multidimensional de-projection of I to S is 
defined as a set of subitems Ss∈  that reference source items 

Ii∈  along all dimensions: (Fig. 4)  

} ,|{},,,{ 121 IiidsidsSsdddI nn ∈=→∧∧=→∈=→ KK  

Grouping and aggregation by means of the operation of 
multidimensional de-projection can be used for online analytical 
processing (OLAP). This approach consists in choosing some 



target subconcept the items of which we want to group and 
aggregate. Then it is necessary to specify several dimension paths 
from this concept along which we want to analyze data. The level 
of details can be varied by choosing source superconcepts along 
each of these dimension paths. The source multidimensional 
concept is the Cartesian product of all the domain concepts chosen 
along dimension paths. Finally, the source items are de-projected 
onto the target concept by producing groups of items that can be 
aggregated.  
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Figure 4. Multidimensional de-projection.  

 
Let us assume that S is the target concept with items to be grouped 
and aggregated. In concept S we select a number of dimension 
paths nppp ,,, 21 K  which will be used for analysis. A level 

〉〈= nlllL ,,, 21 K  is a set of integers specifying ranks along these 
dimension paths. Then nddd ,,, 21 K  are dimensions of concept S 
with ranks nlll ,,, 21 K  and domains nDDD ,,, 21 K , 

)(Dom jj dD = , nj ,,2,1 K= . For example, 
order.customer.country and product.category are 
two dimension paths of the target concept OrderParts (Fig. 2). 
We might choose level 〉〈= 1,2L  for initial analysis, which 
produces dimensions OrderParts.order.customer and 
OrderParts.product with domains Customers and 
Products, respectively.  

For each level the universe of discourse (called multidimensional 
cube in OLAP) is defined as a set of all possible items produced 
from the corresponding domains:  

}|,,,{ 2121 jjnnL DDDD ∈〉〈==×××=Ω ωωωωω KK   

Multidimensional projection of a set of items SI ⊆  to level L is a 
set of points from the cube LΩ  referenced by items from I via 
dimensions nddd ,,, 21 K  of level L:  

} ,|{ 1 SIididiLI nL ⊆∈=→∧∧=→Ω∈=→ ωωω K  

Multidimensional de-projection of a subset of items LI Ω⊆  
(where LΩ  is defined by level L) is a set of items from S with 
projection in I:  

} ,|{}{ 1 Ln IdsdsSsLI Ω⊆∈=→∧∧=→∈=→ ωωω K  

In the concept-oriented query language the source domains are 
listed after the keyword FORALL, for example:  
N = FORALL(c Customers, p Products) { ... }  

It can be thought of as iteration over all combinations of 
customers and products although the order is not dictated and the 
procedure can be optimized. A query returns a new collection of 
items which can be stored in a variable. Items returned from such 

a query are specified via keyword RETURN normally using some 
conditions specified via keyword IF, for example:  
FORALL(c Customers, p Products) {  
  IF( count( c->{Orders->customer} ) > 5  
     && p.category=’cars’) RETURN(c, p);  
}  

This query selects only items from the source 2-dimensional space 
if the customer has more than 5 orders and the product is a car. 
Note that in order to compute the number of orders for the current 
customer we de-project it to the subconcept Orders and then 
apply aggregation function count to a set of orders.  

Suppose that S=OrderParts is the target concept which is 
projected to the source concept along two dimension paths 
p1=OrderParts.order.customer.country (3 levels) 
and p2=OrderParts.product.category (2 leves). If it is 
necessary to analyze dependencies between customers and 
products then each their combination <c,p> (or keyword this) 
is de-projected into concept OrderParts along two dimensions 
and the result collection stored in the local variable tmp:  
FORALL(c Customers, p Products) {  
  IF( count(c->{Orders->customer}) > 5) ) { 
    tmp=<c,p>->{ OrderParts.order.customer,  
                 OrderParts.product };  
    RETURN <c, p, avg(tmp.price) >;  
  } 
}  

The intermediate local variable tmp stores a collection of order 
parts associated with the current customer and the current product 
(and element of 2-dimensional cube). For each such combination 
the query returns an average price in addition to the customer and 
product.  

An operation of increasing rank jl  (one constituent of level) of 

one dimension jd  is referred to as roll up. An operation of 

decreasing rank jl  of one dimension jd  is referred to as drill 
down. If all level constituents are 0s then we get concept S which 
contains the most detailed information used for analysis. If all 
level constituents are 1s then we get a set of dimensions with rank 
1 and direct superconcepts of S as domains.  
For example, we can get more general distribution of average 
price along countries (instead of individual customers) and 
categories (instead of individual products) by rolling up 
(increasing dimensions rank) along both dimensions:  
FORALL(c Countries, p Categories) {  
  tmp =  
  <c,p>->{OrderParts.order.customer.country,  
          OrderParts.product.category };  
  IF( count(tmp) > 5 )  
    RETURN <c, p, avg(tmp.price) >;  
}  

This query computes 2-dimensional de-aggregation for each 
source point <c,p> and then returns average price for only those 
having more than 5 order parts.  
An interesting feature of the COM is that in many cases the access 
path can be computed automatically. In order to retrieve the 
necessary data it is enough only to impose constraints and to 
indicate the target concept. The idea is that the constraints are 



propagated automatically downward in the concept graph till the 
very bottom. After that this (constrained) information from the 
most specific level is used to retreive items from the target 
concept. For example (Fig. 2), let us assume that we want to get 
all categories for some country and month. Instead of specify a 
concrete query we can simply impose these constraints while the 
model will do all the rest itself: This could be written as the 
following query:  
Months = {m Months | m == 'June' }  
Countries = {c Countries | c == 'Germany' }  
N = FORALL(c Categories) {  
  tmp = c->{OrderParts->product->category} 
         ->order  
  RETURN <c, sum( tmp.price ) >;  
}  

In the first two lines we simply redefine the two existing concepts 
by restricting their items. (These constraints are visible only from 
the current and all internal contexts but not from outside.) They 
are propagated downward by de-projecting till the concept 
OrderParts, which will contain only order parts for the 
specified country and month. The restricted order parts are then 
propagated upward to the target concept Categories by means 
of projection. This means that only categories for the selected 
order parts will satisfy the initial constraints. The query returns a 
category item as well as the total price of its orders. In order to 
compute this price we de-project the current category to 
OrderParts and then project it to Orders. A collection of all 
orders related to the current category is stored in a local variable 
and then the order price is summed up in return statement.  
In more complex cases the constraint propagation path can be 
ambiguous and needs to be specified explicitly, say, by indicating 
some intermediate concept. For example, if we want to get all 
auction product categories related to some user then there exist 
two paths for constraint propagation: through the concept 
AuctionBids and through the concept Auctions.  

6. CONCLUSIONS 
In comparison to existing data models the proposed approach has 
a number of advantages and distinguishing features. It is an 
integrated full-featured model rather than a specific mechanism or 
auxiliary technology. This means that all necessary mechanisms 
exist within this very model. Another distinguishing feature of the 
concept-oriented model is its simplicity. By using only a few main 
constructs it is possible to implement all the most important data 
modelling mechanisms and manipulation techniques. Indeed, 
ordered sets of concepts and items as well as dimensions is 
enough to derive such data modelling constructs as multi-valued 
attributes, multidimensional cubes, measures, joins etc. It can be 
said that everything in the concept-oriented model is about order 
and duality because these two phenomena are of crucial 
importance for defining its properties. In particular, the relative 
order of an element defines its semantics. Data access and 
analysis are based on operations of projection and de-projection, 
which also reflect the order of elements and duality. As a result 
this model solves the problem of logical navigation by avoiding 
complex joins. The order of elements and these two operations 
also allow us to integrate the mechanism of grouping and 
aggregation into the model as its natural part rather than an 
additional (analytical) layer. All items are naturally grouped in the 
model while cubes, dimensions, measures are roles assigned to 
elements of the model for the purpose of concrete analysis task.  
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